

Figure S1. Phylogeny of Lassa virus strains evaluated in Strain 13/N guinea pigs.

Phylogenetic analysis of full-length nucleoprotein (NP) nucleotide sequences. Phylogenetic tree was rooted using 2 Mopeia virus (MOPV) isolates, and isolates were grouped by clades. Node labels represent bootstrap values, 1,000 replicates. Indicated are the five LASV strains that were evaluated in strain 13/N guinea pigs (Sauerwald, Nigeria-322, Nigeria-231, Nigeria-383, and Togo) and Josiah (strain that the VRP vaccine (Vx) was based on). LASV clades cluster based on geographical location, and include 6 major lineages. Clades I–III are found in different regions of Nigeria; Clade IV in Sierra Leone, Liberia, and Guinea; Clade V in southern Mali; and Clade VI in Togo.

Lassa virus replicon particle vaccine protects strain 13/N guinea pigs against challenge with geographically and genetically diverse viral strains

Jessica R. Spengler^{1*}, Markus H. Kainulainen¹, Stephen R. Welch¹, JoAnn D. Coleman-McCray¹, Jessica R. Harmon¹, Jillian A. Condrey², Florine E.M. Scholte¹, Stuart T. Nichol¹, Joel M. Montgomery¹, César G. Albariño ¹, Christina F. Spiropoulou¹

¹Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States

²Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, United States

Supplementary tables:

- Table S1. Summary of LASV strains assessed in vitro and in vivo
- Table S2. LASV and Mopeia virus sequences used for phylogenetic analysis
- Table S3. Clinical scoring and euthanasia criteria for LASV-infected strain 13/N guinea pigs
- Table S4. Summary of clinical parameters, viral RNA detection, and serology in LASV-infected strain 13/N guinea pigs
- Table S5. Summary of clinical parameters, viral RNA detection, and serology in VRP-vaccinated and mock-vaccinated LASV-infected strain 13/N guinea pigs

Table S1. Summary of LASV strains assessed in vitro and in vivo

Strain	Clade	Alternative designation	Source	Origin	Passage history	GenBank/Reference
Sauerwald	II	803213	Human, fatal	Onitsha, Nigeria, 1974	P3 or P5, 1 pass on Vero,	MG812680, MG812681
		810801			2 or 4 passes on Vero-E6	(PMID: 31588039)
		813884-NIG-1974				
Nigeria-322	II	las806322	Human, outcome	Owerri, Nigeria, 1989	P3 on Vero-E6	AF182226
		813877-NIG-1989	unknown			(NP partial; PMID: 10888638).
						OM140826, OM140827
Nigeria-231	Ш	Nigeria 200003231	Human, fatal	Jos, Nigeria, 2000	P2 on Vero-E6	OM140830, OM140831
3		813888-NIG-2000	,	, J,		
Nigeria-383	III	Nigeria 200706383	Human, fatal	Jos, Nigeria, 2007	P2 on Vero-E6	OM140828, OM140829
J		813878-NIG-2007	•	, ,		,
Togo	VI	Lassa/H.sapiens-tc/TGO/2016/812939;	Human, survivor	Togo, 2016	P3 on Vero-E6	MF990887 (PMID: 29460758),
. ogo	••	201600568 Togo	riaman, carvivor	1090, 2010	1 0 011 1010 20	KU961971
		813889-TGO-2016				

Table S2. LASV and Mopeia virus sequences used for phylogenetic analysis

Clade	Country	Isolated	Strain Name	Genbank# S	Genbank# L
1	Nigeria	1969	Pinneo	KM822128.1	KM822127.1
2	Nigeria	1974	810801-NIG-1974	MG812681	MG812680
2	Nigeria	1989	806593-NIG-1989	KU978811.1	KU978812.1
2	Nigeria	1989	813877-NIG-1989	OM140827	OM140826
2	Nigeria	2008	Nig08-04	GU481068.1	GU481069.1
2	Nigeria	2008	Nig08-A47	GU481078.1	GU481079.1
2	Nigeria	2009	LASV035-NIG-2009	KM822004	KM822003
2	Nigeria	2010	LASV221-NIG-2010	KM822022	KM822021
2	Nigeria	2011	ISTH0009-NIG-2011	KM821912.1	KM821911.1
2	Nigeria	2012	ISTH1121-NIG-2012	KM821945.1	KM821944.1
3	Nigeria	1981	807876-NIG-1981	MG812635	MG812634
3	Nigeria	2000	813888-NIG-2000	OM140831	OM140830
3	Nigeria	2007	813878-NIG-2007	OM140829	OM140828
3	Nigeria	2008	Nig08-A18	GU481070.1	GU481071.1
3	Nigeria	2008	Nig08-A19	GU481072.1	GU481073.1
4	Liberia	1972	803204-LBR-1972	MG812648	MG812649
4	Sierra Leone	1975	803209-SLE-1975	MG812647	MG812646
4	Sierra Leone	1976	Josiah	AY628203.1	AY628202.1
4	Sierra Leone	1977	806827-SLE-1977	MG812639	MG812638
4	Sierra Leone	1979	806568-SLE-1979	MG812643	MG812642
4	Liberia	1980	Z148	AY628205.1	AY628204.1
4	Liberia	1981	806829-LBR-1981	MG812636	MG812637
4	Guinea	1981	Macenta	AY628201.1	AY628200.1
4	Guinea	1996	Guinea Faranah	KU978807.1	KU978808.1
4	Sierra Leone	2000	NL	AY179173.1	AY179172.1
4	Sierra Leone	2009	G502-SLE-2009	KM821773.1	KM821772.1
4	Sierra Leone	2009	G692-SLE-2009	KM821783.1	KM821782.1
4	Sierra Leone	2009	L395-SLE-2009	KM822115	KM822114
4	Liberia	2010	811606-LBR-USA-2010	MG812679	MG812678
4	Sierra Leone	2010	G1180-SLE-2010	KM821794.1	KM821793.1
4	Sierra Leone	2010	G1442-SLE-2011	KM821800.1	KM821799.1
4	Sierra Leone	2011	G2222-SLE-2011	KM821832.1	KM821831.1
4	Sierra Leone	2011	G2259-SLE-2011	KM821835.1	KM821834.1
4	Sierra Leone	2012	LM779-SLE-2012	KM822126	KM822125
4	Sierra Leone	2012	G3010-SLE-2012		KM821881.1
4	Liberia	2013	812337-LBR-USA-2014	KM821882.1	
4			812673-LBR-USA-2015	MG812658 MG812650	MG812659
-	Liberia	2015			MG812651
5 5	Ghana, CI, BF	2000 2012	AV Pombo P114	AF246121.2	AY179171.1 KF478761.1
	Mali		Bamba-R114	KF478766.1	
5	Mali	2012	Komina-R16	KF478767.1	KF478760.1
5	Mali	2012	Ouoma-R123	KF478768.1	KF478764.1
5	Mali	2012	Soromba-R	KF478765.1	KF478762.1
5	Mali	2012	Soromba-R30	KF478769.1	KF478763.1
6	Togo	2016	Togo/2016/7082	KU961971.1	KU961972.2
NA	Mozambique	1972	Mopeia AN20410	AY772170.1	AY772169.1
NA	Mozambique	UNK	Mopeia Mozambique	DQ328874.1	DQ328875.1
NA	NA	NA	rJosiah	HQ688673.1	HQ688675.1

Sequences used for phylogenetic analyses depicted in Figure S1. CI, Côte d'Ivoire; BF, Burkina Faso; UNK, unknown; NA, not applicable.

Table S3. Clinical scoring and euthanasia criteria for LASV-infected strain 13/N guinea pigs

Score	Clinical sign
0	BAR
	QAR
	QDR +/- interest in enrichment
1	Hunched back/ruffled coat vs. normal
	Huddling/burrowing
	Mild/moderate weakness
	Dehydration (eye recession)
2	Ataxia, circling, tremors, and/or head
	tilt
	Weight loss >15%
	Severe weakness
3	Abnormal breathing
	Anemia
	Paralysis
12	Frank hemorrhage/Bleeding
12	Moribund
	Weight loss > 25%

Clinical signs were scored based on 14 parameters. Weight change % calculated from baseline at -1 dpi. Each row within the score category is additive, i.e., if an animal exhibited mild weakness and had weight loss >15%, the total score would equal 4. End-point criteria reached at score of \geq 12. BAR, bright, alert, and responsive; QAR, quiet, alert, and responsive; QDR, quiet, dull, but responsive.

Table S4. Summary of clinical parameters, viral RNA detection, and serology in LASV-infected strain 13/N guinea pigs

No	Virus strain	Clade	Sex	Age at d0 (d)	End (dpi)	Max weight loss (%)	Peak temp (dpi)	Max clin score	Anti-NP reactivity*	Liver	Spleen	Repro	Kidney	Heart	Lung	Eye	Brain	Blood
1	Togo	VI	F	1093	42	-9.4	12	1	++	-	1.0E+05	-	-	-	-	-	4.3E+01	5.4E+02
2	Togo	VI	M	926	24 [†]	-25.7	12	12	+	3.3E+05	6.8E+07	-	6.2E+04	6.9E+07	1.2E+05	1.4E+07	6.6E+04	1.1E+04
3	Togo	VI	M	966	42	-2.8	12	1	++	-	6.4E+03	-	5.5E+01	-	-	-	-	-
4	Togo	VI	M	667	42	-1.6	11	1	++	-	2.6E+03	-	-	-	-	-	-	-
5	Togo	VI	F	431	42	2.0	11	1	+++	-	4.8E+03	-	-	-	-	-	-	-
6	Sauerwald	II	F	1093	42	-10.6	11	4	++	1.7E+03	3.6E+04	-	-	4.6E+02	-	4.6E+02	-	1.2E+03
7	Sauerwald	II	M	234	42	-8.8	12	2	+++	2.8E+02	8.1E+04	-	4.2E+01	-	-	9.5E+02	-	5.4E+02
8	Sauerwald	II	M	939	42	4.3	10	1	+++	-	2.3E+04	-	-	2.3E+01	-	-	-	-
9	Sauerwald	II	M	666	42	0.9	11	2	+++	-	6.0E+04	-	-	-	-	3.9E+02	-	-
10	Sauerwald	II	F	431	42	-0.5	10	1	+++	-	1.5E+05	-	-	-	-	-	-	4.1E+02
11	Nigeria 322	II	F	971	42	-12.3	NA	0	++	-	-	-	-	-	-	-	-	-
12	Nigeria 322	II	M	903	42	-6.3	NA	1	+++	-	-	-	-	-	-	-	-	-
13	Nigeria 322	II	M	757	42	-20.6	NA	5	+++	-	-	-	-	-	-	-	-	-
14	Nigeria 322	II	M	631	42	6.1	NA	2	+++	-	-	-	-	-	-	-	-	-
15	Nigeria 322	II	F	434	42	-0.7	NA	0	+++	-	-	-	-	-	-	-	-	-
16	Nigeria 231	Ш	F	971	42	-11.1	14	2	++	-	6.4E+04	-	-	-	-	1.0E+03	-	3.1E+02
17	Nigeria 231	Ш	M	903	21 [†]	-20.6	12	12	-	6.8E+07	1.1E+08	2.3E+06	8.6E+04	3.8E+04	4.8E+07	7.8E+07	1.4E+05	8.8E+05
18	Nigeria 231	Ш	М	669	42	-8.8	15	2	++	4.3E+02	1.5E+05	-	-	-	1.7E+02	5.0E+03	4.3E+03	_
19	Nigeria 231	Ш	M	631	42	-4.9	12	1	++	-	3.8E+04	-	-	-	-	1.5E+03	-	_
20	Nigeria 231	Ш	F	424	42	-11.6	12	5	++	-	1.6E+05	-	-	-	-	5.4E+04	-	5.6E+02
21	Nigeria 383	III	F	939	42	-17.7	13	3	+	5.7E+03	1.5E+05	7.4E+03	-	-	2.2E+03	2.2E+05	-	5.4E+03
22	Nigeria 383	Ш	М	755	42	-20.9	12-13	4	+	6.0E+03	1.4E+05	2.8E+02	3.8E+03	-	-	1.4E+05	-	1.3E+03
23	Nigeria 383	III	M	757	42	-4.8	12	2	+++	-	4.1E+04	-	-	NA	-	-	-	-
24	Nigeria 383	Ш	M	667	42	-2.7	12–14	1	+++	-	2.6E+04	-	-	-	-	2.3E+03	-	2.4E+03
25	Nigeria 383	Ш	F	1093	42	-4.9	12, 14	3	++	1.8E+03	1.0E+05	-	-	-	-	1.8E+05	1.8E+04	1.3E+03

Groups of 5 animals were inoculated SC with a target dose of 1 \times 10⁴ FFU with 1 of 5 LASV strains. All blood and tissue samples were collected at study endpoint. Viral RNA load reported in copy number per μ L of RNA. †, euthanasia due to severe disease; –, below the limit of detection; *, level of IgG reactivity in plasma to Josiah NP by immunofluorescent assay (-, not detected; +, low; ++, moderate; +++, high). NA, not applicable.

Table S5. Summary of clinical parameters, viral RNA detection, and serology in VRP-vaccinated and mock-vaccinated LASV-infected strain 13/N guinea pigs

No	Vx	Virus strain	Cd	Sx	Age at d0 (d)	End (dpi)	Max weight loss (%)	Peak temp (dpi)	Max clin. score	Pre Cx Anti-NP react.*	Post Cx Anti-NP react.*	Liver	Spleen	Repro	Kidney	Heart	Lung	Eye	Brain	Blood
1	+	Sauerwald	II	F	843	42	2.1	26	0	-	+++	-	-	-	-	-	-	-	-	-
2	+	Sauerwald	II	F	717	42	-4.5	34	0	-	+	-	-	-	-	-	-	-	-	-
3	+	Sauerwald	II	М	520	42	-0.4	28-29	0	+	+++	-	-	-	-	-	-	-	-	-
4	+	Sauerwald	II	М	273	42	4.9	29	0	+	+++	-	-	-	-	-	-	-	-	-
5	+	Sauerwald	II	F	280	42	0.0	9, 35	0	-	+++	-	-	-	-	-	-	-	-	-
6	+	Nigeria-231	Ш	F	841	42	-1.3	10, 34	0	-	+++	-	-	-	-	-	-	-	-	-
7	+	Nigeria-231	Ш	М	398	42	3.5	34	0	+	+++	-	-	-	-	-	-	-	-	-
8	+	Nigeria-231	Ш	М	516	42	4.9	32	0	+	+++	-	-	-	-	-	-	-	-	-
9	+	Nigeria-231	Ш	М	278	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
10	+	Nigeria-231	Ш	F	280	42	1.7	23	0	++	+++	-	-	-	-	-	-	-	-	-
11	-	Sauerwald	Ш	F	752	42	-5.5	11-12	0	-	++	-	3.3E+04	-	-	9.8E+02	-	-	-	-
12	-	Sauerwald	II	М	510	42	-2.7	11	2	-	+++	-	6.3E+04	-	-	-	-	-	-	-
13	-	Sauerwald	II	F	520	42	0.2	11	1	-	++	-	5.3E+04	NA	-	-	-	-	-	-
14	-	Sauerwald	II	М	278	42	-0.8	12	2	-	+++	-	1.7E+04	-	-	-	-	3.3E+02	-	-
15	-	Sauerwald	II	F	273	42	-0.9	11	2	-	++	-	1.0E+04	-	-	-	-	-	-	-
16	-	Nigeria-231	Ш	F	749	27 [†]	-18.6	12-13	12	-	NA	7.2E+06	1.9E+06	4.7E+05	-	1.6E+04	3.2E+05	1.7E+07	3.0E+04	NA
17	-	Nigeria-231	Ш	М	398	42	-11.9	12-13	2	-	++	-	2.9E+03	-	-	-	-	2.0E+04	-	-
18	-	Nigeria-231	III	М	398	42	-2.0	11	1	-	+++	-	2.8E+04	-	-	-	-	-	-	-
19	-	Nigeria-231	III	М	273	42	-8.2	12-12	2	-	++	-	4.1E+04	-	-	-	-	9.9E+01	-	-
20	-	Nigeria-231	Ш	F	267	42	-9.4	11	1	-	++	3.9E+02	4.5E+04	-	-	-	-	7.7E+03	-	-

Animal no. 9 was removed from study prior to challenge (at 4 days post vaccination) due to study independent health reasons (urinary obstruction). Pre-challenge (Pre Cx) blood samples were collected from the cranial vena cava at 28 days post vaccination, just prior to infection (Day 0); all post challenge (Post Cx) blood (intra-cardiac) and tissue samples were collected at study endpoint. Viral RNA load reported in copy number per µL of RNA. †, succumbed to disease, no terminal blood sample was obtained. *, level of IgG reactivity in plasma to Josiah NP by immunofluorescent assay (-, not detected; +, low; ++, moderate; +++, high). Cx, challenge; NA, not applicable or sample not available; VRP, LASV replicon particle; Vx, indicates VRP vaccination (+, present; -, absent).

Lassa virus replicon particle vaccine protects strain 13/N guinea pigs against challenge with geographically and genetically diverse viral strains

Jessica R. Spengler^{1*}, Markus H. Kainulainen¹, Stephen R. Welch¹, JoAnn D. Coleman-McCray¹, Jessica R. Harmon¹, Jillian A. Condrey², Florine E.M. Scholte¹, Stuart T. Nichol¹, Joel M. Montgomery¹, César G. Albariño ¹, Christina F. Spiropoulou¹

¹Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States

²Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, United States

Supplementary materials and methods

Biosafety

All work with infectious virus or infected animals was conducted in a biosafety level 4 (BSL-4) laboratory at the Centers for Disease Control and Prevention (CDC) following established BSL-4 standard operating procedures approved by the Institutional Biosafety Committee. All animal procedures were approved by the CDC Institutional Animal Care and Use Committee. CDC is fully accredited by AAALAC-International. All recombinant virus work was approved by the Centers for Disease Control and Prevention Institutional Biosafety Committee.

Guinea pigs

Healthy strain 13/N guinea pigs were selected from the CDC breeding colony and distributed proportionally by sex and age into experimental groups. Guinea pigs were housed individually on a bedding mixture of pelleted paperchip (Lab Supply, Fort Worth, TX), crinkle paper (Crink-l'Nest, The Andersons Lab Bedding, Maumee, OH), and natural soft cellulose bedding

(BioFresh Comfort bedding, Patterson, NY) in HEPA filtered IVC caging (Maxi-Miser® PIV System, Thoren Caging Systems), and provided unrestricted water and pelleted diet (LabDiet 5025, Land O'Lakes, St. Louis, MO) with daily timothy hay and supplemental vitamin C-rich fresh vegetables. Environmental parameters were maintained within a temperature range of 68–79°F and 30–70% relative humidity on a 12:12 hour light:dark cycle. Annual health monitoring of the colony includes serology (Guinea Pig Basic Opti-Spot, IDEXX BioResearch, Columbia, MO) and baseline complete blood counts and clinical chemistry analyses on a subset of animals. All evaluated animals were free of *Clostridium piliforme*, guinea pig parainfluenza virus 3, lymphocytic choriomeningitis virus, murine pneumonia virus, Sendai virus, and *Encephalitozoon cuniculi*, as determined using serological screening tests.

Clinical monitoring of guinea pigs

Animals' body temperatures were monitored using implanted microchip transponders (BMDS IPTT-300). Water consumption was measured using graduated bottles and calculated as percentage of water consumed overnight. Clinical signs were scored based on 14 parameters: 1 point each for quiet, dull, responsive (QDR) disposition, hunched back or ruffled coat, huddling or burrowing; 2 points each for mild or moderate weakness, dehydration (eye recession), ataxia, circling, tremors, head tilt, weight loss of >15%; 3 points each for severe weakness, abnormal breathing, or anemia; 12 points each for paralysis, frank hemorrhage or bleeding, moribund state, or weight loss of >25% (Table S3). Animals were humanely euthanized when end-point criteria were reached (clinical score ≥ 12), or at study completion (42 dpi).

Serology

Antibodies against LASV NP in guinea pig plasma were detected as previously described [4][5]. Briefly, GPC-16 cells were transfected with a plasmid constitutively expressing LASV NP (strain Josiah), or a non-expressing control plasmid. Two days later, the cells were fixed and gamma-

irradiated EDTA plasma samples were used as primary antibodies at dilution 1:200, followed by detection with an Alexa488-conjugated anti-guinea pig secondary antibody. The resulting staining was scored as negative or as positive with a three-step scale.

Next-generation sequencing

RNA from cell culture supernatants was clarified by low-speed centrifugation and inactivated with TRIPURE (Roche) reagent; total RNA from was extracted using the Direct-zol RNA purification kit (Zymo Research) according to manufacturer's instructions. Ribosomal RNA was removed, and cDNA libraries were prepared using the KAPA RNA HyperPrep Kit with RiboErase (HMR) (Roche). NGS was performed using paired-end 2 × 150bp chemistry on an Illumina MiniSeq instrument. NGS data, including read mapping, contig assembly, and sequence alignments was done using CLC Genomics Workbench 21. Phylogenetic trees were constructed (neighbor-joining method, Jukes-Cantor nucleotide distance measure; bootstrap analysis based on 1,000 replicates) in CLC Genomics Workbench 21.