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SUPPLEMENTAL MATERIAL: 
Comparative Effectiveness and Safety of Seizure Prophylaxis 

Among Adults after Acute Ischemic Stroke 
 
 
 
A. SUPPLEMENTAL TEXT 

 

Get with the Guidelines 

 

The data collected in GWTG included patient sociodemographic, health history, and clinical 

data detailing the stroke admission (e.g., stroke severity assessment as defined by the 

validated NIH Stroke Severity Scale, NIHSS).24, 25 Each patient discharged from the healthcare 

system with a stroke diagnosis had their data checked for quality and submitted to the GWTG 

Registry, as required by the Massachusetts Department of Public Health for Primary Stroke 

Service designation and the Joint Commission Comprehensive Stroke Center program.21, 23 

 

 

Operational Definitions for Measures of Interest  

 

Seizure prophylaxis 

We use the term “seizure prophylaxis”, instead of “epilepsy treatment”, because the diagnosis 

of epilepsy would require meeting one of the ILAE’s operational definition of epilepsy.57, 58 

However, in the acute brain injury phase, it is difficult to determine if a new early seizure is truly 

unprovoked. For instance, the AIS changes (e.g., metabolic dysfunction of intracellular ions, 

increased glutamate) and the hospitalization bring several potential provoking factors (e.g., 

exposure to new drugs, sleep deprivation, hypoxia, sepsis).48 Because these factors are 

theoretically transient, one could conservatively argue that every seizure in this acute setting is 

potentially “provoked” seizure.59   

 

Socio-demographic factors 

We used data from RPDR to obtain several demographic factors such as age, sex, race, 

ethnicity, language, and addresses.  We obtained a series of clinical factors and then derive 

some validated summary measures, such as the Charlson Comorbidity Index (CCI,) which can 

predict a patient’s mortality for short and long term by categorizing a range of comorbidities 

(i.e., a total of 22 conditions such as heart disease). We derived the CCI from the GWTG and 

RPDR datasets (baseline outpatient and in-hospital data). The CCI is based on the 

International Classification of Diseases (ICD) diagnosis codes.60 It is also a good measure of 

medical morbidity, which may predict seizures (antiseizure drug (ASD) use) and mortality.  

 

Stroke characteristics and severity  
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Stroke severity is a strong predictor of ASD initiation, seizures, and mortality.61 Factors of 

stroke severity include cortical infarction and stroke extension,62 neuroimaging traits (e.g., 

infarct volume and location, diffusion-perfusion mismatch, poor collateral blood flow, 

development of cerebral edema in non-lacunar ischemic stroke), and ischemic stroke 

mechanism. 

 

We used the validated National Institutes of Health stroke severity score (NIHSS), which is a 

summary measure of stroke severity and may be associated with seizure risk (and ASD 

initiation) and mortality. We will obtain NIHSS from the GWTG dataset (in-hospital data). The 

NIHSS score is defined as the sum of 15 individually evaluated elements, and ranges from 0 to 

42. Stroke severity scores can be used as a continuous measure or categorized as no stroke 

symptoms (0), minor stroke (NIHSS 1-4), moderate stroke (NIHSS 5-15), moderate to severe 

stroke (NIHSS 16-20), and severe stroke (NIHSS 21-42).63 

 

Medication Burden Index  

Polypharmacy is a major risk factor for adverse drug reactions and has been associated with 

mortality.64 We will use data from the 6 previous months prior to stroke admission to estimate 

the total daily oral medication other than antiseizure drugs as follows: “Each unique medication 

identified was classified as a) indicated for at least one of the 21 chronic medical conditions, b) 

indicated for a diagnosis other than the 21 chronic medical conditions considered, or c) a daily 

health regimen agent. Several daily oral medications were computed as 1) A+B, and 2) 

A+B+C. Estimates of numbers of daily medications for the management of co-morbid 

conditions are presented as the sum of medications potentially indicated for each condition. 

Estimates of the proportion of daily oral “medication” intake due to daily health regimens were 

the sum of the number of agents that could not be identified as potentially indicated for a 

medical condition. To estimate total daily oral medication intake, health regimen agents were 

combined with the medications for each disease combination and counted in the total”.64  

 

Healthcare Utilization 

We examined several measures of healthcare utilization, including visit frequency and location 

and institutionalization (e.g., frequency of ED admissions). We obtained discharge status and 

length of stay for each stroke admission.  

 

Insurance coverage  

Some patients might come to the academic institution but might not follow-up within the 

hospital MGB system that generates the data at hand (i.e., “leakage” or receiving care 

elsewhere). Some patients might not be able to come for follow-up care if they are no longer 

covered by any of the several insurance plans of the MGB system. For all patients, we created 

a variable named “last service date”, which indicates the date of the last use of the system 

(could be any trace of medication fill, appointment, phone call, etc.). We then defined loss-to-
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follow-up due to loss from the system an observation is censored at either 30 days after their 

last encounter date in RPDR, or 30 days after Day 0, whichever comes first. 

 

Electroencephalogram (EEG) 

Results from EEG can influence the decision to start an ASD. EEG monitoring also 

questionably improves the probability of survival by diagnosing subclinical seizures or status 

epilepticus.6 As discussed in the background section, some patients with certain types of EEG 

abnormalities would likely benefit from ASDs within hospitalization (e.g., status epilepticus, 

continuous generalized periodic discharges at a rate greater than 1 Hz, abundant periods of 

the lateralized rhythmic delta with evolving epileptiform discharges). Others could mostly be 

harmed by unnecessary ASD initiation (e.g., sporadic epileptic discharges, generalized 

rhythmic delta activity, multifocal discharges with a triphasic morphology and anterior-posterior 

gradient). We will create a baseline and time-varying variables for EEG performed, along with 

the duration of EEG monitoring (e.g., EEG routine vs prolonged 12-24h monitoring).  

 

Specifically, we will obtain a baseline EEG measure with the count of EEGs done during the 6 

months prior to stroke admission date. For the time-varying EEG variable, we will create one 

for each day (t=0 ... t=30). If patient had prolonged EEG monitoring (e.g., 24-48h) the measure 

will reflect the days of monitoring. If the patient had routine EEG (e.g., <2h), then we will mark 

that day as one day of EEG surveillance and resume the search for other codes in the 

subsequent day.   

 

ED visits 

An ED visit is a marker of health resource utilization, and time-varying severity (which could 

represent drug adverse effects, disease complications, decompensated comorbid conditions, 

etc.). Like EEG, we obtained a baseline ED visit variable with a count of ED visits during the 6 

months prior to the stroke admission date. For the time-varying ED visits variable, we will 

create one indicator variable for each day (t=0 ... t=30), and this will reflect a visit to an ED in 

the previous 24h of time=t, among those still alive and in the community-dwelling setting.   

 

 

Methods – Summarized  

 

Ideally, we would address the comparative effectiveness and safety question in this population 

by randomizing eligible patients at the time of their hospital admission into those assigned ASD 

for early seizure prophylaxis in the following seven days vs a control group. If this was 

possible, we could repeat this study with different exposure windows, and we could count 

death rates in each group at the end of a 30-day follow-up period. However, such trials require 

a huge sample size, and are currently not feasible in such a vulnerable population (i.e., older 

patients admitted after AIS are often frail and unable to articulate care needs and preferences). 
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In this context of arguable indications and exposure windows, we have leveraged multiple new 

analytical methods to answer whether ASDs for early (“seven days”, an arbitrary threshold 

commonly used)47, 48, 65 seizure prophylaxis would cause net benefit or harm. 

 

To summarize, in the process of estimating standardized survival curves for the two strategies 

of interest, we arranged the data with person-time structure, conducted parametric estimation 

of hazards with pooled logistic regression model with time-varying intercept as a function of 

time (each day), allowed for time-varying hazard ratio by adding product terms between 

strategy (initiate vs defer) and time (days), computed survival probabilities using predictions of 

the conditional survival for each day under each treatment level (initiate vs defer), then 

estimated inverse probability (IP) weights for censoring (SWC), then estimated IP weights for 

strategy (SWS), then combined: SWA × SWS. Finally, we used bootstrapping to calculate an 

approximate 95% confidence interval of the difference of standardized survivals (to address 

the re-sampling issue introduced by the method).  

 

Statistical Analysis - Detailed  

 

To evaluate the effect of ASD initiation in the first seven days post-AIS on 30-day mortality, we 

estimated mortality probabilities using model-based predictions of the conditional survival for 

each day under each treatment strategy.  

 

We first estimated inverse-probability weights by modeling treatment initiation in the original 

dataset, duplicated the dataset to create “clones,” censored the clones as previously 

described, and assigned them appropriate weights to rebalance the two groups to address 

both cloning and probability of treatment selection (cloning-censoring-weighting).30 The model 

for treatment initiation during the grace period was a pooled logistic regression over person-

days. It included validated measures of stroke severity and clinical severity (Charlson 

comorbidity score), all measured at admission, and post-admission measures of the daily 

prescription count, CMO status, seizures or seizure-like events, and receipt of 

electroencephalogram, as well as a time-varying intercept (see Table S2 for model parameters 

for estimating seizure prophylaxis initiation weights). 

 

In the weighted dataset, we fit a time-varying pooled logistic regression model for death as a 

function of treatment strategy (i.e., an indicator of which method a given clone belonged to) 

and interaction terms between treatment strategy and time, measured in days from admission 

until the end of the follow-up to allow for time-varying effects. We predicted mortality 

probabilities for each day under each treatment strategy from this model.66 We estimated 

absolute differences in mean 30-day mortality. To illustrate the magnitude of confounding bias 

beyond the selection or immortal person-time biases avoided by the clone-censor-weight 

approach, we repeated the analysis without confounders in the model for treatment initiation 
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during the grace period, i.e., the model corrected only for the duplications in the pseudo-

population of clones. Finally, we obtained 95% confidence intervals for all measures using the 

bootstrap with 500 replications.  

 

We separately created IPT weights with some variables collected at baseline (i.e., NIHSS, 

prescription count at baseline, and seizure-like events at baseline) to show the balance (i.e., all 

SMDs <0.2 after applying IPT weights), please see Supplemental Table S2.  

 

Of note, patients undergoing procedures such as IV injection of tissue plasminogen activator 

and Endovascular thrombectomy (AIS severity proxies) are at greater risk to develop post-

stroke seizures and there could be differential probability of receipt of prophylaxis.  

 

We have included AIS severity (NIHSS scores) in the models (Supplemental Text, page 4, 

section Emulated Trial Design with Cloning – Methods) to address any additional risk due to 

procedures used to treat more severe stroke. The selection of variables includes subject 

matter expertise, appreciation of a directed acyclic diagram based on a specific research 

question, and examination of the actual distribution of the factors in relation to mortality.19, 27-30 

 

Missing Data  

We examined patterns of missingness for all pertinent variables to confirm that there was no 

informative missingness (i.e., variables used in the analysis had negligible missing 

information).  

 

Pre-planned Stratified Analysis 

ASDs may be more harmful to older patients and patients with moderate-to-severe stroke 

relative to mild stroke. Therefore, we repeated the above analyses stratified by categories of 

age (65-74 years and ≥75 years) and NIHSS stroke severity (e.g., mild versus moderate). 

 

Technical Section for Addressing Immortal-Person Time   

In this study, the trial is about "start treatment within the first seven days after admission" in the 

same pattern that we would have seen people start treatment in real-life, with everyone 

starting on day seven if they haven't already done so. In this approach, we first clone the 

population. Therefore, there is no table 1 to illustrate differences across the two groups; they 

are identical (one clone is assigned treatment and the other clone is not). Then, we apply 

censoring weights as they violate one of the protocols. At that time, we use the baseline and 

time-dependent covariates that affect the change in strategy. In this design, results may be 

sensitive to when during the seven days people start treatment. 

 

Solving a common methodological problem in observational data with staggered treatment 

initiation requires aligning the start of follow-up and exposure assignment. Two possible 
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approaches correspond to two different target trials. First, our proposed target trial, where 

treatment assignment and follow-up start at baseline (i.e., hospital admission), is the first-time 

treatment can be initiated. In a randomized trial, the assigned treatment strategy would be 

known at that time, even if no treatment was initiated that day; in observational studies, 

assigning patient “clones” to each treatment strategy allows time-zero alignment.52-55, 67 

Second, we could have emulated a trial where patients are randomized each day throughout 

the first week post-AIS as they become eligible (e.g., a new indication). There would be seven 

time-zeros when follow-up would start for those assigned to initiating and not initiating on that 

day in the target trial and, as well as in the observational emulation. Both approaches help 

avoid selection and immortal time bias by ensuring that the start of follow-up and treatment 

assignment are aligned, as they would be in a randomized trial. 

 

Alternative traditional approaches to deal with grace periods for exposure initiation have 

included the following: First, if epilepsy-specific ASD initiators are compared to non-initiators 

and the day of AIS admission is considered time zero, the start of follow-up would not be 

aligned with exposure initiation unless treatment initiation occurs exclusively at baseline. This 

is generally not the case, so patients have already survived several days to be treated. The 

treated group would therefore have no deaths during the first days of follow-up, a bias that is 

referred to as an “immortal time bias.”19, 68, 69 More generally, this bias arises in naïve analyses 

which use post-baseline information to define exposure strategies.69 Second, an analysis that 

instead started follow-up for both the treated and untreated groups after the seven-day 

treatment initiation window would be missing deaths in both groups that occurred during that 

window. If mortality differed between groups, they would no longer be comparable, even in a 

randomized trial (with randomization at admission). Excluding the first week of follow-up would 

miss potential acute effects of epilepsy-specific ASDs and would deplete the sample of the 

most susceptible patients. Third, starting follow-up of exposed patients on the day of treatment 

initiation and of unexposed ones on the day of admission would also be biased in the presence 

of mortality trends during the first days post-AIS since those initiating treatment later would 

have a different baseline risk.  

 

Cloning and Censoring: In the “Initiate Treatment within seven days” dataset, we 

create a copy of the original dataset but kept data points on clones that started 

treatment within the grace period and patient clones that were censored at the end of 

the grace period because they did not begin treatment within the grace period (censor 

unless it is during the grace period). In the “Do not Initiate Treatment within seven days” 

dataset, we create a copy of the original dataset but keep data points on clones that 

never started treatment and clones that started treatment before they started (i.e., they 

are being censored for starting, censor if start treatment any time during the grace 

period). Then, we create a cloned dataset consisting of the two combined datasets (i.e., 

cloned and censored, and now ready to proceed with weighting).  
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Weighting: In the original data, we fit a weight model among people yet to start 

treatment (model for treatment initiation). Then, in the cloned dataset, we apply weights 

[Pr (uncensored at time t | uncensored at time t – 1]. In the treatment arm: the weight 

contribution is one during the grace period because Pr (uncensored | grace period) = 1 

even if the patient does not start treatment.  

 

Patients who have started treatment within the grace period (i.e., protocol compliant) 

are therefore uncensored at the end of the grace period (e.g., as illustrated in 

Supplementary Figure S1-C, individual 2), but they need to receive an upweight to 

account for those who deviated from the protocol (i.e., those who did not start treatment 

but were supposed to start, based on their assigned strategy – as illustrated in 

Supplementary Figure S1-C, individual 3). After the grace period (so any other days), 

the patients cannot be censored because they have already started treatment, so the 

weight is 1.  

 

In the no treatment arm, patients can get censored during the grace period for starting 

treatment (e.g., as illustrated in Supplementary Figure S1-D, individuals 2 and 4), then 

they receive a weight [Pr (no treatment)]. These weights are updated daily [Pr 

(uncensored at time t | uncensored at time t - 1, history) x Pr (uncensored at time t - 1 | 

uncensored at time t - 2, history) x, etc.]. These inverse-probability weights allow for 

adjustment because the same patient does not adhere to both treatment strategies and, 

therefore must be censored from one of them.52-55, 67 

 

Weight creation and Model specifications: First, we defined the model for treatment 

initiation among patients yet to start treatment, and we predict Pr(untreated at time t | 

untreated at time t - 1): Numerator: Logit (A/1-A) = B0 + B1*(Age) + B2*(Race). 

Denominator: Logit (A/1-A) = B0 + B1*(NIHSS) + B2*(Charlson Comorbidity Score) + 

B3*(CMO Status) + B4*(Seizure-like Event) + B5*(Electroencephalogram) + 

B6*(Prescription count).  Next, we estimate the weights = 1 / Pr (uncensored at time t | 

baseline & time-varying baseline variables) and the stabilized weights = (numerator 

product of treatment weights)/(denominator product of treatment weights). Finally, we 

define the outcome models (logistic regression), that use stabilized weights in the 

cloned data and predicts death hazard (int_surv = 1 – haz) within each day: Logit 

(Death/1-Death) = B0 + B1*(Date_post_adm ) + B2*I(Date_post_adm*Date_post_adm) 

+ B3*(A*Date_post_adm). Then, we obtain average risk and average survival over each 

treatment group for the 30 days (i.e., pooled logistic regression, surv = 

cumprod(int_surv) and risk = 1 – surv). In an additional step with arguable assumptions, 

we approximate the hazard ratio for the first 30 days with outcome model with constant 
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treatment effect, that also uses stabilized weights in the cloned data: Logit (D/1-D) = B0 

+ B1*(Date_post_adm ) + B2*I(Date_post_adm*Date_post_adm) + B3*(A).” 

 

Emulated Trial Design with Cloning  

Unlike in a randomized trial, we could not know which treatment strategy the patient had been 

assigned to until the day of the prescription (for those exposed) or seven days post-AIS (for 

those unexposed). Therefore, for patients who died within seven days without initiation, we 

could not know if they would have received treatment had they not died. Thus, for the seven 

days post-AIS, follow-up days until treatment initiation or death count towards both treatment 

strategies. To carry out such counting, we duplicated the dataset, creating “clones” of each 

patient so that each clone would contribute to both treatment strategies until their strategy is 

known. The follow-up of a clone is censored when its treatment strategy is violated, i.e., clones 

assigned to no-initiation were censored if they initiated treatment within those seven days, and 

clones assigned to initiation were censored if they did not initiate by day seven. Thus, only one 

clone remains in the dataset after the first seven days of follow-up. Lastly, inverse probability 

weights are applied to the generated pseudo-population of clones for each treatment strategy 

to address the fact that the same patient does not adhere to both treatment strategies. To 

mimic randomization, these weights also account for the non-random treatment initiation. This 

"cloning-censoring-weighting” approach has been used in previous studies and avoids a 

common methodological problem in observational data with staggered treatment initiation. 

 

In the process of estimating standardized survival curves for the two strategies of interest, we 

arranged the data with person-time structure, conducted parametric estimation of hazards with 

pooled logistic regression model with time-varying intercept as a function of time (each day), 

allowed for time-varying hazard ratio by adding product terms between strategy (initiate vs 

defer) and time (days), computed survival probabilities using predictions of the conditional 

survival for each day under each treatment level (initiate vs defer), then estimated inverse 

probability (IP) weights for censoring (SWC), then estimated IP weights for strategy (SWS), then 

finally combined: SWA × SWS. Finally, we used bootstrapping to calculate an approximate 95% 

confidence interval of the difference of standardized survivals (to address the re-sampling 

issue introduced by the method). 
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B. SUPPLEMENTAL FIGURES 
 
Figure S1. Simplistic Representation of the Problem and Solution 

 Design Simplistic illustration of dataset  

A. Target Trial 

 
B. Naïve aligne

d and crude  
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C. Misaligned 
crude  

 
D. Cloned, 

aligned, 
crude 

Initiate Treatment within 7 Days Clone 

 
Initiate Treatment within 7 Days Clone 
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Legend: This list of figures illustrates the problem of immortal time bias.  
 
 
A. Target trial. Such trial does not exist in real life. We illustrated four patients: patients 2 and 

4 are randomized to receive epilepsy-specific ASD within 7 days, and we will know that 

information about randomization at admission. Patients 1 and 3 are randomized to not receive 

epilepsy-specific ASDs within 7 days. They are then followed from admission until they either 

die or until the end of the study. Here, they are censored because the study ended at 30 days. 

  
B. Naïve aligned, crude. Depicts crude naïve analysis including the immortal time, 
therefore introducing immortal time bias. In patient 4, the follow-up starts at admission, but 
the person is only exposed starting at day six. In this approach, some of the early deaths are 
misattributed to the unexposed group (i.e., patient 4 must survive up until day six to be able to 
receive the exposure and be classified as exposed).  
 
C. Misaligned, crude. Depicts crude or naïve analysis excluding the immortal time to avoid 
introducing that bias. In patient 4, this approach ignores the survival of this person for up to 
day six and then starts the follow-up at the exposure initiation day, while the unexposed start 
follow-up continues to be at admission. In this approach, the exposed may be a selective 
group of patients that are evolving with complications and are about to have highest mortality 
rate in the subsequent days. 
 
D. Cloned, aligned, crude. First, we create pseudo-observations or ‘clones’ for each patient, 
and then assign each of those clones to one of the two treatment strategies at the time of the 
hospital admission. Next, we proceed to artificially censor those who deviate from the 
assignment strategy. This is to ensure that clones follow their assigned strategy after the time 
zero. For instance, patient 2 in the “Initiate Treatment within 7 Days Clone dataset” was 
assigned to start treatment and started within the period that the patient was supposed to start. 
However, patient 3 was supposed to start treatment within seven days but deviated from the 
assigned strategy and needs to be censored. Additional illustrative examples can be found on 
previously published peer-reviewed publications.19, 20 
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Figure S2. Patterns of Drug Initiation vs Count of Deaths 

 
Legend: We provide a breakdown of when the medications of interest were started by post-
AIS days within the seven days exposure window (from day zero to day six). In the 
observational data, 64 patients (42%) received one of the ASDs of interest within the first 24 
hours post-AIS admission; Cumulatively, 133 patients (88%) received one of the ASDs of 
interest within the first 72 hours post-AIS admission. We also note that there was a significant 
number of deaths in the first 7 days to illustrate the degree of immortal time bias.  
 
Definition for the values in the cells: 
 
Numerator: Among all patients who initiate ASDs of interest on day i post AIS / initiate ASDs 
of interest after day i (or never initiate ASDs of interest), the count of deaths on day j post AIS. 
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Denominator: Among all patients who initiate ASDs of interest on day i post stroke / initiate 
ASDs of interest after day i (or never initiate ASDs of interest), the count of all patients at risk 
of death on day j post stroke, not including those censored prior to day j. 
For the cells under the header “Total count (from yellow only)”:  
Numerator: All deaths occurred in the post-AIS period corresponding to the yellow cells in 
that row.  
Denominator: All patients at risk of death on the first yellow cells in that row (e.g., day 0 post 
AIS for those initiated ASDs of interest on day 0, day 1 post stroke for those initiated on day 1, 
and so on). 
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Figure S3. Patterns of Drug Discontinuation 

 
Legend: We provide a breakdown of when the medications of interest were discontinued. 
Greater than 60% of the patients initiated on ASDs of interest were discontinued within 24h, 
and greater than 90% were discontinued within 30 days. Y axis: Patient count. X axis: Last day 
of ASD dispensation since AIS admission.  
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C. SUPPLEMENTAL TABLES 
 
Table S1. List of Epilepsy-Specific ASDs  

GENERIC BRAND 

Epilepsy-Specific ASD 

Acetazolamide Diamox 

Acetazolamide XR Diamox Sequels 

Brivaracetam Briviact 

Cannabidiol Epidiolex 

Eslicarbazepine Aptiom 

Ethosuximide Zarontin 

Ethotoin Peganone 

Felbamate Felbatol 

Lacosamide Vimpat 

Lamotrigine Lamictal 

Lamotrigine ER Lamictal XR 

Levetiracetam Keppra, Roweepra, Spritam 

Levetiracetam ER Keppra XR, Roweepra XR, Elepsia XR 

Methsuximide Celontin 

Perampanel Fycompa 

Phenobarbital Solfoton, Luminal 

Phenytoin Epanutin, Dilantin, Phenytek 

Retigabine, Ezogabine Potiga 

Rufinamide Banzel, Inovelon 

Tiagabine  Gabitril 

Vigabatrin Sabril, Vigadrone 

Not Epilepsy-Specific ASD 

Alprazolam Xanax, Xanax XR, Alprazolam 

Carbamazepine Epitol, Tegretol, Equetro, Teril 

Carbamazepine ER Carbatrol, Tegretol XR, Epitol ER 

Chlordiazepoxide Hydrochloride Librax 

Clobazam Frisium, Onfi, Sympazan 

Clonazepam Epitril, Klonopin, Rivotril 

Clorazepate Tranxene, Gen-Xene 

Diazepam Diastat, Valium 

Divalproex Sodium Depakote, Depakote sprinkles 

Divalproex Sodium ER Depakote ER 

Estazolam Estazolam 

Flumazenil Flumazenil 

Gabapentin Neurontin, Gralise 

Gabapentin ER Horizant 

Lorazepam Ativan 

Midazolam Midazolam, Seizalam 

Oxazepam Oxazepam 

Oxcarbazepine Trileptal 



 16 

Oxcarbazepine ER Oxtellar XR 

Pregabalin Lyrica 

Primidone Mysoline 

Temazepam Temazepam 

Topiramate Topamax 

Topiramate ER Qudexy XR, Trokendi XR 

Triazolam Halcion, Triazolam, Restoril 

Valproic acid Convulex, Depacon, Depakene,  Orfiril, Valporal, 
Valprosid 

Zonisamide Zonegran 
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Table S2. Characteristics of patients by ASD exposure; standardized IPT weights 

  Epilepsy-specific 
ASD initiator 
(N=3,171.34) 

Epilepsy-specific 
ASD non-initiator  
(N=3,170.97) 

SMD 

Socio-Demographic Characteristics (recorded at admission) 

Age, mean (SD) 76.77 (8.36) 78.09 (8.45) 0.158 

Female (%) 1,464.6 (46.2) 1,621.8 (51.1) 0.099 

Non-white  400.9 (13.2) 496.3 (16.4) 0.089 

Hispanic (%) 29.4 (1.0) 44.3 (1.5) 0.045 

Primary insurance Medicare or other 
government (vs private) (%) 

2,461.2 (77.6) 2,563.4 (80.9) 0.081 

Baseline Medication Use (recorded during the 90 days before admission) 

Prescription count, Mean (SD) 6.81 (25.06) 7.86 (30.39) 0.038 

Categories of medication use (%)    

No prescription recorded** 2,297.9 (72.5) 2,273.4 (71.7)  

1-4 drugs 348.9 (11.0) 347.3 (11.0)  

5-9 drugs 204.9 (6.5) 147.0 (4.6)  

>9 drugs 319.7 (10.1) 403.3 (12.7)  

Baseline Clinical Characteristics (recorded during 12 months before admission) 

Charlson comorbidity score, mean 
(SD) 

0.91 (1.40) 1.15 (1.75) 0.149 

Alzheimer’s Disease and Related 
Dementias 

90.0 (2.8) 110.0 (3.5) 0.036 

Baseline Health-Resource Utilization (recorded during 12 months before admission), % 

Fall-related injury  187.2 (5.9) 342.1 (10.8) 0.177 

Seizure-like events 140.3 (4.4) 174.6 (5.5) 0.05 

Routine EEG 28.4 (0.9) 25.2 (0.8) 0.011 

Long term EEG 3,171.3 (100.0) 3,171.0 (100.0) <0.001 

Acute Ischemic Stroke Severity (recorded at admission), % 

NIHSS (mean (SD)) 7.94 (7.69) 7.80 (7.94) 0.018 

Mild (0-4) 1,355.0 (42.7) 1,584.6 (50.0)  

Moderate (5-15) 1,175.9 (37.1) 965.3 (30.4)  

Moderate to severe (16-20) 314.8 (9.9) 310.4 (9.8)  

Severe (>20) 325.7 (10.3) 310.6 (9.8)  

In-hospital Measures of Stroke Severity and Complications  
(recorded during first day of admission)*** (%) 

Observed large vessel occlusion 682.2 (36.3) 634.0 (35.0) 0.029 

IV injection of tissue plasminogen 
activator (tPA) 

133.5 (4.2) 233.8 (7.4) 0.136 

Endovascular thrombectomy (EVT) 26.0 (0.8) 71.8 (2.3) 0.118 

Computed tomography (CT/CAT) 
Scan 

2,102.7 (66.3) 1,950.3 (61.5) 0.1 

Magnetic resonance imaging (MRI) of 
the brain 

1,421.8 (44.8) 1,573.1 (49.6) 0.096 
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Legend: Abbreviations: SD, standard deviation; SMD, standardized mean difference; EEG, 
electroencephalogram. ** No prescription recorded: the prescription information was a) missing 
from the MGB structured health system data warehouse, b) the patient was not taking any 
prescription drug, c) the patient was taking prescription drugs given elsewhere (e.g., over the 
counter, prescribed and recorded in another healthcare system), d) other unknown reason. 
 
 
 
Table S3. Drug Type Count 

Drug Type Count Percentage (%) 

Levetiracetam 142 84.02 

Phenytoin 11 6.51 

Lamotrigine 8 4.73 

Other* 18 4.74 

 
Legend: *Other: Drugs initiated less frequently like Lacosamide and Phenobarbital.   
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Table S4. Main Results 30-day Risk Differences 
 

Measure  Estimate 95 % Cl 

Crude - Naïve comparison of 30-day mortality 

Do not initiate 120 deaths/1000 
patients 

108 deaths/1000 
patients  

131 deaths/1000 
patients  

Initiate  219 deaths/1000 
patients  

153 deaths/1000 
patients  

284 deaths/1000 
patients  

Risk 
Difference  

99 deaths/1000 
patients  

32 deaths/1000 
patients  

166 deaths/1000 
patients  

Standardized (Addressing Selection and Confounding) 

Do not initiate 120 deaths/1000 
patients 

86 deaths/1000 
patients  

145 deaths/1000 
patients  

Initiate  251 deaths/1000 
patients  

190 deaths/1000 
patients  

307 deaths/1000 
patients  

Risk 
Difference  

130 deaths/1000 
patients  

65 deaths/1000 
patients  

200 deaths/1000 
patients  

 
 
 
Table S5. Main Standardized Estimates for Stratified Sample by Stroke Severity 
 

Standardized, Mild Stroke 

Measure  Estimate 95 % Cl Measure 

Do not initiate 24 deaths/1000 
patients 

17 deaths/1000 
patients  

27 deaths/1000 
patients  

Initiate  75 deaths/1000 
patients  

34 deaths/1000 
patients  

92 deaths/1000 
patients  

Risk Difference  52 deaths/1000 
patients  

11 deaths/1000 
patients  

72 deaths/1000 
patients  

Standardized, Moderate 

Measure  Estimate 95 % Cl Measure 

Do not initiate 218 deaths/1000 
patients 

166 deaths/1000 
patients  

252 deaths/1000 
patients  

Initiate  356 deaths/1000 
patients  

280 deaths/1000 
patients  

421 deaths/1000 
patients  

Risk Difference  138 deaths/1000 
patients  

52 deaths/1000 
patients  

222 deaths/1000 
patients  
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Table S6. Main Standardized Estimates for Stratified Sample by Age Groups 
 

Standardized, < 75 years 

Measure  Estimate 95 % Cl Measure 

Do not initiate 81 deaths/1000 
patients 

62 deaths/1000 
patients  

101 deaths/1000 
patients  

Initiate  167 deaths/1000 
patients  

107 deaths/1000 
patients  

198 deaths/1000 
patients  

Risk Difference  86 deaths/1000 
patients  

18 deaths/1000 
patients  

118 deaths/1000 
patients  

Standardized, > 75 years 

Measure  Estimate 95 % Cl Measure 

Do not initiate 145 deaths/1000 
patients 

112 deaths/1000 
patients  

162 deaths/1000 
patients  

Initiate  301 deaths/1000 
patients  

206 deaths/1000 
patients  

354 deaths/1000 
patients  

Risk Difference  157 deaths/1000 
patients  

57 deaths/1000 
patients  

219 deaths/1000 
patients  

 
 
 
Table S7. Model Parameters for Estimating Epilepsy-specific ASD Initiation Weights  

Dataset Term Estimate Standard Error P value  

Model 
Parameters 

Intercept -7.64 0.17 0  

NIHSS 0.08 0.01 0  

Charlson Comorbidity 
Score 

0.007 0.04 0.882  

CMO Status -1.32 0.40 0.001  

Seizure-like Event 1.72 0.17 0  

Electroencephalogram 0.67 0.28 0.019  

Prescription Count 0.02 0.01 0  

Legend: NIHSS, National Institute of Health Stroke Severity; CMO, Comfort Measures Only; 
SLE, Seizures or Seizure-like Events. 
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Table S8. The RECORD Statement 

Item No. STROBE 
items70  

Location where 
items are 
reported 

RECORD 
items 

Location in 
manuscript 
where items 
are reported 

Title and abstract  

 1 (a) Indicate the 
study’s design 
with a 
commonly 
used term in 
the title or the 
abstract  
 
(b) Provide in 
the abstract an 
informative and 
balanced 
summary of 
what was done 
and what was 
found 

(a): Abstract 
(page 4) 
 
 
 
(b): Abstract 
(page 4) 

RECORD 1.1: 
The type of 
data used 
should be 
specified in the 
title or abstract. 
When possible, 
the name of the 
databases used 
should be 
included. 
RECORD 1.2: If 
applicable, the 
geographic 
region and 
timeframe 
within which the 
study took 
place should be 
reported in the 
title or abstract. 
RECORD 1.3: If 
linkage 
between 
databases was 
conducted for 
the study, this 
should be 
clearly stated in 
the title or 
abstract. 

1.1: Abstract  
 
 
 
1.2: Abstract  
 
 
 
 
1.3 Abstract  

Introduction 

Background 
rationale 

2 Explain the 
scientific 
background 
and rationale 
for the 
investigation 
being reported 

Introduction     
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Objectives 3 State specific 
objectives, 
including any 
prespecified 
hypotheses 

Introduction    

Methods 

Study Design 4 Present key 
elements of 
study design 
early in the 
paper 

Methods      

Setting 5 Describe the 
setting, 
locations, and 
relevant dates, 
including 
periods of 
recruitment, 
exposure, 
follow-up, and 
data collection 

Methods     

Participants 6 (a) Cohort 
study - Give 
the eligibility 
criteria, and the 
sources and 
methods of 
selection of 
participants. 
Describe 
methods of 
follow-up 
Case-control 
study - Give 
the eligibility 
criteria, and the 
sources and 
methods of 
case 
ascertainment 
and control 
selection. Give 
the rationale for 
the choice of 
cases and 
controls 

(a): Methods  
 
(b) NA 

RECORD 6.1: 
The methods of 
study 
population 
selection (such 
as codes or 
algorithms used 
to identify 
subjects) 
should be listed 
in detail. If this 
is not possible, 
an explanation 
should be 
provided.  
RECORD 6.2: 
Any validation 
studies of the 
codes or 
algorithms used 
to select the 
population 
should be 
referenced. If 
validation was 

6.1: Methods  
 
6.2: NA  
 
6.3: NA 
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Cross-sectional 
study - Give 
the eligibility 
criteria, and the 
sources and 
methods of 
selection of 
participants 
(b) Cohort 
study - For 
matched 
studies, give 
matching 
criteria and 
number of 
exposed and 
unexposed 
Case-control 
study - For 
matched 
studies, give 
matching 
criteria and the 
number of 
controls per 
case 

conducted for 
this study and 
not published 
elsewhere, 
detailed 
methods and 
results should 
be provided. 
 
RECORD 6.3: If 
the study 
involved linkage 
of databases, 
consider use of 
a flow diagram 
or other 
graphical 
display to 
demonstrate 
the data linkage 
process, 
including the 
number of 
patients with 
linked data at 
each stage. 

Variables 7 Clearly define 
all outcomes, 
exposures, 
predictors, 
potential 
confounders, 
and effect 
modifiers. Give 
diagnostic 
criteria, if 
applicable. 

Methods  RECORD 7.1: 
A complete list 
of codes and 
algorithms used 
to classify 
exposures, 
outcomes, 
confounders, 
and effect 
modifiers 
should be 
provided. If 
these cannot be 
reported, an 
explanation 
should be 
provided. 

Methods  

Data sources/ 
measurement 

8 For each 
variable of 
interest, give 

Methods   Data 
sources/ 
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sources of data 
and details of 
methods of 
assessment 
(measurement)
. 
Describe 
comparability 
of assessment 
methods if 
there is more 
than one 
group. 

measuremen
t 

Bias 9 Describe any 
efforts to 
address 
potential 
sources of bias 

Methods   Bias 

Study size 1
0 

Explain how 
the study size 
was arrived at 

Methods   Study size 

Quantitative 
variables 

1
1 

Explain how 
quantitative 
variables were 
handled in the 
analyses. If 
applicable, 
describe which 
groupings were 
chosen, and 
why 

Methods   Quantitative 
variables 

Statistical 
methods 

1
2 

(a) Describe all 
statistical 
methods, 
including those 
used to control 
for confounding 
(b) Describe 
any methods 
used to 
examine 
subgroups and 
interactions 
(c) Explain how 
missing data 

(a): Methods  
(b): Methods   
(c): Methods  
(d): Methods (e): 
Methods  

  Statistical 
methods 
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were 
addressed 
(d) Cohort 
study - If 
applicable, 
explain how 
loss to follow-
up was 
addressed 
Case-control 
study - If 
applicable, 
explain how 
matching of 
cases and 
controls was 
addressed 
Cross-sectional 
study - If 
applicable, 
describe 
analytical 
methods taking 
account of 
sampling 
strategy 
(e) Describe 
any sensitivity 
analyses 

Data access 
and cleaning 
methods 

   RECORD 12.1: 
Authors should 
describe the 
extent to which 
the 
investigators 
had access to 
the database 
population used 
to create the 
study 
population. 
 
RECORD 12.2: 
Authors should 
provide 
information on 

12.1: 
Methods  
 
 
 
12.2: 
Methods  
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the data 
cleaning 
methods used 
in the study. 

Linkage    RECORD 12.3: 
State whether 
the study 
included 
person-level, 
institutional-
level, or other 
data linkage 
across two or 
more 
databases. The 
methods of 
linkage and 
methods of 
linkage quality 
evaluation 
should be 
provided. 

NA 

Results      

Participants 1
3 

(a) Report the 
numbers of 
patients at 
each stage of 
the study (e.g., 
numbers 
potentially 
eligible, 
examined for 
eligibility, 
confirmed 
eligible, 
included in the 
study, 
completing 
follow-up, and 
analysed) 
(b) Give 
reasons for 
non-
participation at 
each stage. 

(a): Results; 
Figure 1; Table 2;   
(b): Figure 1 
(c): Figure 1 

RECORD 13.1: 
Describe in 
detail the 
selection of the 
persons 
included in the 
study (i.e., 
study 
population 
selection) 
including 
filtering based 
on data quality, 
data availability 
and linkage. 
The selection of 
included 
persons can be 
described in the 
text and/or by 
means of the 
study flow 
diagram. 

13.1 Results; 
Methods  
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(c) Consider 
use of a flow 
diagram 

Descriptive 
data 

1
4 

(a) Give 
characteristics 
of study 
participants 
(e.g., 
demographic, 
clinical, social) 
and information 
on exposures 
and potential 
confounders 
(b) Indicate the 
number of 
participants 
with missing 
data for each 
variable of 
interest 
(c) Cohort 
study - 
summarise 
follow-up time 
(e.g., average 
and total 
amount) 

(a): Results  
(b): Results 
(c): Results 

  

Outcome data 1
5 

Cohort study - 
Report 
numbers of 
outcome 
events or 
summary 
measures over 
time 
Case-control 
study - Report 
numbers in 
each exposure 
category, or 
summary 
measures of 
exposure 
Cross-sectional 
study - Report 

Results    
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numbers of 
outcome 
events or 
summary 
measures 

Main results 1
6 

(a) Give 
unadjusted 
estimates and, 
if applicable, 
confounder-
adjusted 
estimates and 
their precision 
(e.g., 95% 
confidence 
interval). Make 
clear which 
confounders 
were adjusted 
for and why 
they were 
included 
(b) Report 
category 
boundaries 
when 
continuous 
variables were 
categorized 
(c) If relevant, 
consider 
translating 
estimates of 
relative risk into 
absolute risk 
for a 
meaningful 
time period 

(a): Results 
(b): Results:  
(c): Results 

  

Other analyses 1
7 

Report other 
analyses 
done—e.g., 
analyses of 
subgroups and 
interactions, 
and sensitivity 
analyses 

Results   
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Discussion      

Key results 1
8 

Summarise key 
results with 
reference to 
study 
objectives 

Discussion   

Limitations 1
9 

Discuss 
limitations of 
the study, 
taking into 
account 
sources of 
potential bias 
or imprecision. 
Discuss both 
direction and 
magnitude of 
any potential 
bias 

Discussion  RECORD 19.1: 
Discuss the 
implications of 
using data that 
were not 
created or 
collected to 
answer the 
specific 
research 
question(s). 
Include 
discussion of 
misclassificatio
n bias, 
unmeasured 
confounding, 
missing data, 
and changing 
eligibility over 
time, as they 
pertain to the 
study being 
reported. 

Discussion  
 

Interpretation 2
0 

Give a cautious 
overall 
interpretation of 
results 
considering 
objectives, 
limitations, 
multiplicity of 
analyses, 
results from 
similar studies, 
and other 
relevant 
evidence 

Discussion     

Generalisabilit
y 

2
1 

Discuss the 
generalisability 

Discussion     
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(external 
validity) of the 
study results 

Other 
Information 

     

Funding 2
2 

Give the 
source of 
funding and the 
role of the 
funders for the 
present study 
and, if 
applicable, for 
the original 
study on which 
the present 
article is based 

Acknowledgment
s  

   

Accessibility of 
protocol, raw 
data, and 
programming 
code 

   RECORD 22.1: 
Authors should 
provide 
information on 
how to access 
any 
supplemental 
information 
such as the 
study protocol, 
raw data, or 
programming 
code. 

Supplementa
l tables, 
figures, and 
text.    

*Checklist is protected under Creative Commons Attribution (CC BY) license. 
  

http://creativecommons.org/licenses/by/4.0/
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D. STATISTICAL CODE   
--- 
title: "Lidia Moura - ASD Emulated Trial Design Code" 
--- 
 
#SETUP 
```{r} 
library(knitr) 
library(dplyr) 
library(tidyverse) 
library(tidyr) 
library(survival) 
library(missForest) 
 
# Analysis function 
 
# this is the function used for the analysis 
# requires a long, cloned dataset (orig_dat) and the baseline variables  
# for standarization (baseline_vars) 
analysis_function <- function(orig_dat, baseline_vars, boot = FALSE, trunc_q = 0.975, ...) { 
   
  # sample MRNs if part of the bootstrap 
  if (boot) { 
    MRNs <- unique(orig_dat$MRN) 
    boot_MRNs <- tibble(old_MRN = sample(MRNs, replace = TRUE), 
                        MRN = 1:length(MRNs)) 
    dat <- right_join(boot_MRNs, orig_dat, by = c("old_MRN" = "MRN")) 
  } else { # or else just use the original data 
    dat <- orig_dat 
  } 
   
  #CREATE CLONES 
  # these are the people that started treatment within the grace period 
  # and those that were censored at the end of the grace period because they didn't 
  start_txt <- dat %>%  
    # censor unless it's during grace period  
    # or if someone started treatment w/in grace period 
    filter(Date_post_adm < grace_day | dayA < grace_day) %>%  
    # indicator for randomization arm: start treatment within grace period 
    mutate(txt = 1) 
   
  # these are the people that never started treatment  
  # or those that did, before they started (ie they are being censored for starting) 
  never_txt <- dat %>%  
    # censor if start treatment any time during grace period 
    # since once A is 1, is always 1 



 32 

    filter(A == 0) %>%  
    mutate(txt = 0) 
   
  # combine the data 
  clones <- bind_rows(start_txt, never_txt) 
   
  # in original data, fit models among people yet to start treatment (Alag = 0) 
  # ie model for treatment initiation 
  num_mod <- glm(A ~  NIHSS + Charlson_baseline,  
                 family = binomial(), data = dat,  
                 subset = Alag == 0) 
  denom_mod <- glm(A ~  NIHSS + Charlson_baseline + CMO_time_varying + SLE_inhospital 
+ EEG_Routine_inhospital + Prescription_Count_inhospital, 
                   family = binomial(), data = dat, 
                   subset = Alag == 0) 
   
  num_cens <- glm(ltfu ~ Date_post_adm +  
                       A*Date_post_adm  , 
                  family = binomial(), data = dat, 
                   subset = Date_post_adm < last_day & Death_Status == 0) 
   
  denom_cens <- glm(ltfu ~ Date_post_adm +  
                       A*Date_post_adm  , 
                  family = binomial(), data = dat, 
                   subset = Date_post_adm < last_day & Death_Status == 0) 
   
  weighted_dat <- clones %>%  
    # only use complete cases (because I don't know what else to do with them) 
    filter(!if_any(c(NIHSS, Charlson_baseline, CMO_time_varying, SLE_inhospital, 
EEG_Routine_inhospital, Prescription_Count_inhospital), is.na)) %>%  
    # pr(uncensored at time t | uncensored at time t - 1) 
    mutate(pnum = predict(num_mod, newdata = ., type = "response"), 
           pdenom = predict(denom_mod, newdata = ., type = "response"), 
           pnum_cens = predict(num_cens, newdata = ., type = "response"), 
           pdenom_cens = predict(denom_cens, newdata = ., type = "response"), 
           numCont = case_when( 
              
             # in the txt arm, weight contribution is 1 during grace period  
             # b/c pr(uncensored | grace period) = 1 even if you don't start 
             # (in the don't start txt arm, can get censored during grace period for starting txt) 
             txt == 1 & Date_post_adm < grace_day ~ 1, 
              
             # at the end of the grace period, these people are UNCENSORED 
             # so must upweight them to account for those who didn't start 
             # this should ONLY include people who have A = 1 
             txt == 1 & Date_post_adm == grace_day ~ pnum, 
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             # after the grace period (so any other days), 
             # can't be censored because already started 
             txt == 1 & Date_post_adm > grace_day ~ 1, 
              
             # in no txt arm, always will be p(no txt) 
             # because can always be censored for starting txt 
             txt == 0 ~ 1 - pnum 
           ), 
           # same logic in the denominator 
           denomCont = case_when( 
             txt == 1 & Date_post_adm < grace_day ~ 1, 
             txt == 1 & Date_post_adm == grace_day ~ pdenom, 
             txt == 1 & Date_post_adm > grace_day ~ 1, 
             txt == 0 ~ 1 - pdenom 
           ), 
            
           # censoring weights 
           # always probability of not being censored (last day doesn't count) 
           numCont_cens = ifelse(Date_post_adm == last_day, 1, 1 - pnum_cens), 
           denomCont_cens = ifelse(Date_post_adm == last_day, 1, 1 - pdenom_cens) 
    ) %>%  
    group_by(MRN,txt) %>%  
    # pr(uncensored at time t | uncensored at time t - 1, history) x  
    #       pr(uncensored at time t - 1 | uncensored at time t - 2, history) x etc. 
    # this only matters for the no txt arm, who keep not taking txt 
    mutate(num_prod = cumprod(numCont), 
           denom_prod = cumprod(denomCont), 
           num_cens_prod = cumprod(numCont_cens), 
           denom_cens_prod = cumprod(denomCont_cens), 
           # wt = 1 / prob (uncensored at time t | bl & tv vars) 
            
           stabw = (num_prod*num_cens_prod) / (denom_prod*denom_cens_prod)) 
   
  summary(weighted_dat$stabw) 
   
  # truncate weights 
  tau <- quantile(weighted_dat$stabw, trunc_q, na.rm = TRUE)  
  weighted_dat$stabw[weighted_dat$stabw > tau] <- tau 
   
  # outcome model with stabilized weights 
  outcome_mod <- glm(event ~ Date_post_adm +  
                       txt*Date_post_adm,  
                     data = weighted_dat, weights = stabw, family = quasibinomial()) 
 
  predictions <- bind_rows(baseline_vars, 
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                           baseline_vars, .id = "txt") %>%  
    # turn txt from 1, 2 to 0, 1 
    mutate(txt = as.numeric(txt) - 1) %>%  
    # get predicted hazard 
    mutate(haz = predict(outcome_mod, newdata = ., type = "response"), 
           # and survival within a certain day 
           int_surv = 1 - haz) %>%  
    group_by(MRN, txt) %>%  
    mutate(surv = cumprod(int_surv), 
           risk = 1 - surv) %>%  
    # only group by treatment to average risk over the treatment group 
    ungroup() %>%  
    group_by(txt, Date_post_adm) %>%  
    # remove some missing values because missing covariates 
    # deal with later! 
    summarise(average_risk = mean(risk, na.rm = TRUE), 
              average_survival = mean(surv, na.rm = TRUE), 
              .groups = "drop") 
   
  if (boot) clones <- NULL 
   
  # approximate HR with outcome model with constant treatment effect 
  HR_mod <- glm(event ~ Date_post_adm +  
                       txt,  
                     data = weighted_dat, weights = stabw, family = quasibinomial()) 
   
  list(predictions = predictions, clones = clones,  
       tau = tau,  
       denom_mod = broom::tidy(denom_mod), 
       HR_mod = broom::tidy(HR_mod)) 
} 
``` 
 
 
```{r} 
# Main analysis 
 
main_res <- analysis_function(dat, baseline_vars, boot = FALSE, trunc_q = 0.975) 
# save the main results 
write_rds(main_res, file = paste0("results/",style, "_", condition,"_",confounders, 
"_main_res.rds")) 
 
# survival estimates 
predicted_surv <- main_res$predictions 
# the cloned data for checking 
clones <- main_res$clones  
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# the quantile of weights at which they were truncated 
tau <- main_res$tau 
# the model for the weights 
denom_mod <- main_res$denom_mod 
# the model for the outcome 
HR_mod <- main_res$HR_mod 
``` 
 
#DATA CHECKING 
## Now that the main analysis as been run, does the data look as expected? 
 
# How many person-days in each arm overall? 
```{r} 
count(clones, txt) %>% kable() 
``` 
 
#How many patients in each arm? 
```{r} 
count(clones, txt, MRN) %>% count(txt) %>% kable() 
``` 
 
#How many person-days is each person contributing to each treatment arm? 
```{r} 
person_days <- clones %>%  
  group_by(MRN) %>%  
  # in either arm did they ever die, get lost to follow-up, or start med 
  # (for sanity checking) 
  mutate(ever_event = max(event), ever_ltfu = max(ltfu), ever_A = max(A)) %>%  
  ungroup() %>%  
  count(MRN, txt, ever_event, ever_ltfu, ever_A) %>%  
  pivot_wider(names_from = txt, values_from = n, 
              names_prefix = "txt_", values_fill = 0) 
person_days %>% head %>% kable() 
``` 
 
# What is the median number of person-days contributed to each treatment arm (0; 1)? 
```{r} 
median(person_days$txt_0); median(person_days$txt_1) 
``` 
 
```{r} 
# Bootstrap 
# run the analysis function n_boot times 
boot_res <- map(1:n_boot, analysis_function, 
  orig_dat = dat, baseline_vars = baseline_vars, 
  boot = TRUE, trunc_q = 0.975 
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) 
 
# save the bootstrap results 
write_rds(boot_res, file = paste0("results/",style, "_", condition,"_",confounders, 
"_boot_res.rds")) 
``` 
 
```{r} 
# calculate confidence intervals 
boot_res_t <- transpose(boot_res) 
 
boot_predicted_surv <- bind_rows(boot_res_t$predictions, .id = "boot") 
boot_tau <- flatten_dbl(boot_res_t$tau) 
boot_denom_mod <- bind_rows(boot_res_t$denom_mod, .id = "boot") 
boot_HR_mod <- bind_rows(boot_res_t$HR_mod, .id = "boot") 
 
surv_CIs <- boot_predicted_surv %>%  
  group_by(txt, Date_post_adm) %>%  
  summarise(lci_risk = quantile(average_risk, .025), 
            uci_risk = quantile(average_risk, .975), 
            lci_survival = quantile(average_survival, .025), 
            uci_survival = quantile(average_survival, .975), 
            .groups = "drop") 
 
dif_CIs <- boot_predicted_surv %>%  
  filter(Date_post_adm == last_day) %>%  
  select(-average_survival) %>%  
  pivot_wider(names_from = txt,  
              values_from = average_risk, names_prefix = "risk_") %>%  
  mutate(risk_dif = risk_1 - risk_0) %>%  
  summarise(lci_risk_dif = quantile(risk_dif, .025), 
            uci_risk_dif = quantile(risk_dif, .975), 
            lci_risk_1 = quantile(risk_1, .025), 
            lci_risk_0 = quantile(risk_0, .025), 
            uci_risk_1 = quantile(risk_1, .975), 
            uci_risk_0 = quantile(risk_0, .975)) 
 
all_surv <- left_join(predicted_surv, surv_CIs, by = c("txt", "Date_post_adm")) %>%  
  rename_with(str_remove, starts_with("average"), "average_") 
 
all_difs <- predicted_surv %>%  
  filter(Date_post_adm == last_day) %>%  
  select(-average_survival, -Date_post_adm) %>%  
  pivot_wider(names_from = txt,  
              values_from = average_risk, names_prefix = "risk_") %>%  
  mutate(risk_dif = risk_1 - risk_0) %>%  
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  bind_cols(dif_CIs) 
 
all_HRs <- boot_HR_mod %>%  
  filter(term == "txt") %>%  
  summarise(lci_est = quantile(estimate, .025), 
            uci_est = quantile(estimate, .975), 
            .groups = "drop") %>%  
  bind_cols(filter(HR_mod, term == "txt")) %>%  
  transmute(HR = exp(estimate), 
            lci_HR = exp(lci_est), 
            uci_HR = exp(uci_est)) 
``` 
 
 
```{r} 
# 30-day mortality, risk differences, HRs 
all_ests <- bind_cols(all_difs, all_HRs)%>% 
  rename_with(~ paste0("est_", .x), -starts_with(c("lci", "uci")))%>% 
  pivot_longer(everything(), 
    names_to = c(".value", "stat"), 
   names_pattern = "(.+)_(.+)" 
  ) 
 
kable(all_ests) 
 
write_csv(all_ests, file = paste0("results/",style, "_", condition,"_",confounders, "_all_ests.csv")) 
``` 
 
 
```{r} 
# coefficients from the weight model 
kable(denom_mod) 
write_csv(denom_mod, file = paste0("results/",style, "_", condition,"_",confounders, 
"_coeff_weight_model.csv")) 
`` 
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