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1 Branching Processes

1.1 General overview of branching processes

Branching processes are stochastic, individual-based processes commonly used in
epidemiology to model disease transmission when depletion of susceptible individ-
uals by infection is negligible, such as in the early stages of an epidemic or when
infectious diseases are introduced in a non-endemic setting. While branching pro-
cesses represent a range of model types, this analysis models transmission using a
single-type branching process, also known as a discrete time Galton-Watson process.
This is the most well-studied and validated approach to branching processes. Under
this approach, each infected individual is associated with a fixed length time interval
known as a generation; at the end of each generation, each individual in the gener-
ation will have produced a random number of secondary infections (or ”offspring”),
denoted Z, drawn from some probability distribution.

1.2 Analysis of branching process models

The offspring distribution is the probability distribution for the observed number of
secondary cases caused by each individual infectious case, Z (i.e. pz = P (Z = z)
for z = 0, 1, 2, 3, . . . ). A fundamental tool in the analysis of any branching process
model is the probability generating function (pgf) of the offspring distribution. In a
branching process framework, the pgf is a mathematical tool to study the sequence of
probabilities and contains all the information needed to recover the probabilities asso-
ciated with each Z value. The pgf in branching processes can generally be expressed
as GZ(s) =

∑∞
z=0 pzs

z, where s, is a dummy variable with no tangible meaning yet
whose powers serve as a placeholder to recover the probabilities associated with Z
and facilitate the use of high-order derivatives in their recovery.
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Probability generating functions in branching processes

Secondary cases (z value) 0 1 2 3 . . . z

Coefficient (sz) s0 s1 s2 s3 . . . sz

P (Z = z) = pz p0 p1 p2 p3 . . . pz

y
GZ(s) = p0 + p1s+ p2s

2 + p3s
3 + · · ·+ pzs

z + · · · =
∞∑
z=0

pzs
z

Where s is a dummy variable whose powers serve to recover the pz probabilities in a
power series expansion of the probability generating function.

2 Extracting the Probability from the Generating

Function

Of primary interest in branching process models is the probability that an infectious
individual in a given generation transmits Z secondary cases, pz = P (Z = z). As
shown above, this probability is embedded in the generating function of Z. To
extract this probability, we exploit a well-known pgf property related to distributional
moments. Given the pgf GZ(s) =

∑∞
z=0 pzs

z, the coefficient of sz in its expansion for
any z can be extracted by the following three steps:

1. Taking the zth derivative of GZ(s), or dZGZ(s)
dsz

2. Evaluating dZGZ(s)
dsz

at s = 0

3. Normalizing the expression by the constant, 1/z!

For a walk-through proof of this process, we can begin with the probability that an
individual results in a single secondary case (i.e. p1 since z = 1). After taking the
1st derivative, all other terms in the polynomial except the p1 term contain s, thus



5

evaluating the expression at s = 0 extracts p1 (note that 1! = 1):

GZ(s) = p0 + p1s+ p2s
2 + p3s

3 + · · ·+ pzs
z + · · ·

G′Z(s) = p1 + 2p2s+ 3p3s
2 + · · ·+ zpzs

z−1 + · · ·
G′Z(0) = p1

To evaluate the probability that an individual infectious case results in two secondary
cases, we similarly take the second derivative and evaluate at s = 0. In this case, we
must also divide G′′Z(0) by a constant (in this case, 2! = 2) to properly extract p2:

G′′Z(s) = (2× 1)p2 + (3× 2)p3s+ · · ·+ z(z − 1)pzs
z−2 + · · ·

G′′Z(0) = 2p2
1

2
G′′Z(0) = p2

To evaluate the probability that an individual case results in three secondary cases,
we similarly take the third derivative, evaluate at s = 0, and divide by (3× 2) = 3!.

G′′′Z (s) = (3× 2× 1)p3 + (4× 3× 2)p4s+ · · ·+ z(z − 1)(z − 2)pzs
z−3 + · · ·

G′′′Z (0) = (3!)p3
1

3!
G′′′Z (0) = p3

To generalize this, if we would like to extract the probability that an infectious case
generates any number of z secondary cases, P (Z = z), we take the zth derivative,
evaluate at 0, and divide by the appropriate constant:

pz =
1

z!

dzGZ(s)

dsz

∣∣∣∣
s=0

Where z = 0, 1, 2, 3, ....

We expand this concept to the multiplication of generating functions, a commonly
used manipulation of branching process theory. For example, the zth coefficient of
multiplying three generating functions of Z, [GZ(s)]3, provides the probability that
three initial cases cause a total of z secondary infections; it follows that the zth
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coefficient of GZ(s)i specifies the probability that i cases result in z secondary cases,
thus:

P (Z = z|i) =
1

z!

dzGZ(s)i

dsz

∣∣∣∣
s=0

where z = 0, 1, 2, 3, ... and i = 1, 2, 3... (i ≤ z).
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3 Extracting the Probability of Transmission Clus-

ter Sizes

The above methods apply to individual transmission events, which are rarely ob-
served in practice. However, obtaining cases in the same transmission cluster (e.g.,
cases in the same chain, regardless of transmission pattern) is more plausible. We
extend the above principles of branching process theory to mathematically relate the
distribution of individual secondary cases to the distribution of final cluster sizes.

Visualizing individual- and cluster-level data. In this example, 11 individual
cases in a population are represented in 5 transmission chains. (A) Individual data
allow for the reconstruction of transmission trees; integers represent the number of
secondary cases from each case for individual-level data (Z values) (B) Transmission
clusters do not contain information on transmission patterns. Integers in cluster level
data are the sum of all cases in a transmission chain. (C) Distributions of the number
of secondary cases and transmission cluster sizes, respectively.
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3.1 Recurrence relationship for GY (s)

In branching process theory, each individual in a given generation causes a set of
independent and identically distributed (i.i.d.) secondary offspring infections also
defined by GZ(s). The process continues until all individuals in a generation, g,
produce zero secondary cases (e.g., Zg−1 > 0 and Zg = 0), at which point the chain
of transmission becomes extinct. Let Y represent sum of all cases in a transmission
chain (including the index case), referred to as a transmission cluster. The primary
focus of this analysis is to relate the offspring distribution of individual secondary
cases, Z, and the offspring distribution of final cluster sizes, Y . The distribution of
the total number of secondary infections in a single transmission chain (not including
the index case at generation 0) can be defined by the pgf GZ(GY (s)). In order
to include the initial index case, we must further increase the exponent of s by
one, accomplished simply by multiplying the expression by s, yielding the implicit
relationship: [5]:

GY (s) = sGZ((GY (s))

Following the principles outlined in Section 2, we can treat this asGY (s) =
∑∞

y=1 qys
y,

where qy = P (Y = y), allowing us to extract the probability: [8]:

P (Y = y) =
1

y!

dyGY (s)

dsy

∣∣∣∣
s=0

where Y = 1, 2, 3, . . .

The solution to GY (s) = s(GZ(GY (s)) may sometimes be solved recursively with
several helpful conventions. Since there must always be at least one case to initiate
the transmission chain (e.g., a cluster cannot be of size 0), P (Y = 0) = 0 and Y must
be a positive nonzero integer. Furthermore, a cluster of size one, Y = 1 represents
the probability that a single index case transmits zero secondary cases; noting that
G′Y (0) = GZ(0) therefore P (Y = 1) = P (Z = 0). We can extend this to Y = 2
to demonstrate the recursive procedure and the continued relationship between the
generating functions of the total cluster size and individual secondary cases. When
Y = 2, the only permutation available is that the index case transmitted to one other
person who subsequently did not transmit to anyone:

G′′Y (0) =2G′Z(GY (0))G′Y (0)

=2G′Z(0)GZ(0)
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Thus:

P (Y = 2) =
1

2
G′′Y (0) = P (Z = 1)P (Z = 0)

When Y = 3, two permutations are available. The index case may cause two sec-
ondary cases and neither subsequently transmit, or the index case results in one case
who subsequently results in another case that does not transmit, thus:

P (Y = 3) =
1

6
G

(3)
Y (0)

=
1

6

(
3G′′Z(GY (0))[G′Y (0)]2 + 3G′Z(GY (0))G′′Y (0)

)
=

1

2
G′′Z(0)(GZ(0))2 + ((G′Z(0))2(GZ(0))

=P (Z = 2)P (Z = 0)2 + P (Z = 1)2P (Z = 0)

This relationship continues for all Y = 1, 2, 3, . . ..

3.2 Constraints when considering transmission chains in in-
fectious disease

Recall that pz in GZ(s) =
∑∞

z=0 pzs
z specifies the probability that a given case will

infect z secondary cases and that the zth coefficient of GZ(s)y specifies the probability
that y cases result in z secondary cases over the course of a single generation. While
this is a useful starting point, there are several important constraints imposed when
considering biologically valid chains of transmission. First, for every cluster initiating
with n index cases and which collectively go extinct at size y, there must be exactly
y − n transmission events, regardless of the sequence of transmission.
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Visualizing the y − n constraint For every cluster of size y originating with
n index cases, there are exactly y − n transmission events. Here, nodes represent
infected individuals and arcs represent transmission events.

This constraint is consequential in that if we randomly draw a sequence of n integers
from the offspring distribution (representing secondary cases for each individual in
the cluster, and including the possibility of zero secondary cases), the probability
that they sum to y − n is the coefficient of sy−n in GZ(s)y normalized by 1/(y − n)!
and evaluated at s = 0, or:

1

(y − n)!

dy−nGZ(s)y

dsy−n

∣∣∣∣
s=0

Second, for a given cluster size y originating with n index cases, even if the sum
of secondary cases comes to exactly y − n, not all of these permutations will result
in valid transmission chains. This is because when considering true chains of infec-
tious disease transmission, the order of events must be biologically relevant (e.g.,
the order of infections matters). As a result, only a certain proportion of these se-
quences, which is shown to be n/y, will result in a valid chain of transmission.[2, 1, 6]

To demonstrate this concept, it is helpful to draw on notation from Stanley et al.[7]
We denote infectious cases in a given transmission chain as an integer corresponding
to the number of secondary cases, and order these integers such that we enumerate
the number of secondary cases starting from the top and moving left to right:
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Visualizing the nomenclature of possible transmission trees. This figure
demonstrates the nomenclature of two valid transmission trees originating with a
single index case and resulting in a final cluster size of 5. Each position in the
sequence represents a case and the integer represents the number of offspring for that
case. Sequences are ordered from top to bottom, left to right.

Using this notation, one can easily verify the constraint of requiring exactly y − n
by summing the integers in the sequence and noting the sequence length (e.g., in the
above figure, both have length 5 and sum to 4). It is also straightforward to see that
for every valid transmission tree of size y, there are y cyclic permutations of that
sequence that also sum to y − n. Put in other words, one can shift the integers one
position over y times before arriving at the original sequence. As shown below, if
we define L as a sequence of length y summing to y − n, L = {x1x2 . . . xy}, only
n of the y cyclic permutations of L result in a valid transmission sequence. Given
the i.i.d. assumption of our branching process model, each of these permutations
are equally likely to be observed. Thus, n/y of these permutations result in a valid
transmission sequence.

To help conceptualize this, the below figure provides a visual example of this con-
straint for a simple cluster of size Y = 5 originating with n = 1 index case. Two
valid L sequences are shown, e.g., Y − n = 5− 1 = 4 (or using the above notation,∑5

i=1 = xi = 4).
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Visualizing the cyclic permutations of valid transmission sequences. This
figure demonstrates the cyclic permutations of two valid transmission trees originating
with a single index case and resulting in a final cluster size of 5. Green indicates a
valid transmission sequence, and red indicates an invalid transmission sequence.

While all cyclic permutations in the figure sum to Y − n = 5 − 1 = 4, only one
of the five cyclic permutations associated with the sequence results in a biologically
valid transmission chain; given that each chain is equally likely to be observed, the
probability of observing the valid chain is n/y = 1/5.

As a result of this second constraint, the probability of a transmission cluster orig-
inating with n index cases and collectively going extinct at exactly size y must be
normalized by a factor of (n/y), thus:

P (Y = y|n) =

(
n

y

)
1

(y − n)!

dy−nGZ(s)y

dsy−n

∣∣∣∣
s=0

4 The Negative Binomial Distribution

Until this point we have not specified a distribution for GZ(s). Our model as-
sumes GZ(s) is negative binomially distributed with mean R (the basic reproductive
number) and dispersion parameter k. The negative binomial distribution is a two-
parameter distribution popular in biology and epidemiology where the distribution
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is highly overdispersed (e.g., higher than expected variation in the distribution).
Unlike single parameter distributions popular in epidemiology, such as the Poisson
and geometric distributions, the free parameter k allows for an unknown degree of
heterogeneity and quantifies the degree of overdispersion in the distribution.

In general probability theory, the negative binomial distribution typically expresses
the number of successes (p) in a sequence of i.i.d. Bernoulli trials before a specified
number of failures occurs (k). This has been previously reparameterized for infectious
disease by noting that the probability of success can be expressed as p = R/(R+ k)
[4] thus:

P (Z = z) =

(
z + k − 1

k − 1

)
(1− p)kpz

=

(
z + k − 1

k − 1

)(
k

R + k

)k(
R

R + k

)z
=

Γ(z + k)

Γ(z)Γ(k + 1)

(
k

R + k

)k(
R

R + k

)z
where z = 0, 1, 2, . . . and Γ(x) =

∫∞
0
tx−1e−t. The pgf of the negative binomial

distribution is [3]:

GNB
Z (s) =

(
1 +

R

k
(1− s)

)−k
Reverting to R/(R+k) = p for clarity, we can write the pgf of the negative binomial
as:

GNB
Z (s) =

(
1− p
1− ps

)k
=(1− p)k(1− ps)−k

Recall the multiplication of y generating functions yields the generating function
GZ(s)y = (1 − p)ky(1 − ps)−ky. We can use Taylor expansion of GZ(s)y to help
derive the final cluster size distribution. Recall Taylor series expansion for a function
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f(x) = (1 + x)α can be generally expressed as:

(1 + x)α =
∞∑
i=0

(
α

i

)
xi

=1 + αx+
α(α− 1)

2!
x2 + · · ·+ α(α− 1) · · · (α− i+ 1)

i!
xi + · · ·

Letting x = −ps, α = −ky, i = y − n and p = R/(R + k), substituting into the
generating function GNB

Z (s) = (1− p)k(1− ps)−k yields:

GNB
Z (s)y =(1− p)ky(1− ps)−ky

=(1− p)ky
(

1 + kyps+
ky(ky + 1)

2!
p2s2 + · · ·

+
ky(ky + 1) · · · (ky + (y − n)− 1)

(y − n)!
py−nsy−n + · · ·

)
This results in the coefficient of sy−n evaluated at s = 0 as:

1

(y − n)!

dy−nGNB
Z (s)y

dsy−n

∣∣∣∣
s=0

=
(ky + y − n− 1)!

(ky − 1)!(y − n)!
(1− p)kypy−n

=

(
ky + y − n− 1

y − n

)
(1− p)kypy−n

This only holds when k is an integer, though we can extend this to any real number
k by noting that:

ky(ky + 1) + · · ·+ (ky + y − n− 1)

(y − n)!
=

Γ(ky + y − n)

Γ(ky)(y − n)!

Substituting p = R/(R + k) with algebraic manipulation and recalling that only an
n/y proportion of the coefficient of sy−n result in valid transmission sequences, we
can express the final probability of a cluster initiating with n index cases and going
extinct at exactly y cases as:

P (Y = y|n) =

(
n

y

)
Γ(ky + y − n)

Γ(ky)(y − n)!

(R
k

)y−n

(1 + R
k

)ky+y−n
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5 Simulating Imperfect Surveillance

5.1 Missing Cases

The mechanism in which a case is included in the surveillance system is important
to the distribution of cluster sizes in a surveillance system. As described in the
main text, we simulate both passive and active surveillance. In particular, active
surveillance (i.e., contact tracing) is likely differential by cluster size: public health
programs typically initiate active case finding measures only after an initial case or
outbreak is observed.To account for this in evaluating the cluster-based method of
parameter inference, we simulated missing cases in a two step process as described in
the primary text. Briefly, we assumed each cases was observed via passive surveillance
with p1 (where p1 = 1.0 implies perfect surveillance). After evaluation with p1, active
case finding was triggered in chains with at least one other case identified via passive
surveillance. In chains undergoing active case finding, otherwise unobserved cases
were observed with probability p2. A visual representation of this is below:

Simulating imperfect surveillance To simulate the mechanisms of case ascer-
tainment, each case in the true underlying transmission chain is first observed with
probability p1. In this example, p1 = 0.50 and so each case has a 50% probability of
being observed. Second, any unobserved case within a chain where at least one other
case observed by passive surveillance (chains 1 and 4) is re-evaluated for observation
with probability p2 to emulate active case finding measures. Here, p2 = 1.0 and
so all cases in chains where active case finding was triggered are observed. Wholly
unobserved chains (chains 2 and 3) are not subject to active case finding measures.
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5.2 Broken chains

As described in the primary text, after evaluation of p1 and p2, we further considered
the position of the missing case in the chain of transmission. If the missing case was
the sole link between the previous and future generations of spread, the chain was
”broken” into j psuedo-clusters (which themselves could contain unobserved cases).

Broken chains In this example, a transmission chain of size Y = 5 with 2 missing
cases ans is broken into two psuedo-clusters of sizes y1 = 1 and y2 = 2 (dotted
outlines) given the position of the missing cases.

5.3 Censoring

Censoring is a consequence of ongoing chains at the time of data collection and is
an intrinsic property of surveillance data. We approached censoring as a two step
process. First, each chain was designated as censored with probability pcens. Second,
among chains designated as censored, the generation of spread where censoring began
was drawn from a uniform distribution (e.g., all generations had an equal probably of
being the censored generation), with the exception of the first generation which was
not subject to censoring. All cases in the designated generation and all subsequent
generations were unobserved. A visual representation of the censoring scheme is
below.
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Simulating censoring

5.4 Overlapping chains (subclustering)

The final limitation in assessed in this analysis that may play a major role in the
distribution of cluster sizes in a surveillance system is the inability to cleanly and
unambiguously tease apart multiple chains of transmission. For instance, it has been
shown through whole genome sequencing in tuberculosis surveillance that MIRU-
VNTR genotypic clusters often contain multiple transmission subclusters. This may
shift the distribution of cluster sizes to the right, and make transmission appear more
homogenous.

As described in the main text, simulating overlap was an two-step, iterative process.
First all chains were designated to overlap or not with probability pcens (e.g., if
pcens = 0.20, 20 percent of chains in the true underlying surveillance system overlap
with at least one other chain. Second, j chains were randomly drawn from the pool
of chains designated for overlap and merged, resulting in a final cluster of size Y with
n index cases. Merged clusters were then removed from the pool of eligible chains
and the iterative process repeated until the pool of eligible clusters was exhausted.
A visual representation of this process is below.
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Simulating Overlapping Clusters
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6 Supplemental Figures and Tables from Main Text

6.1 Supplemental Figures

eFigure 1: Inference of k under various R values for individual- and
cluster-level data. Each surveillance system contained 2000 simulated transmis-
sion chains under perfect surveillance. Each surveillance system was simulated 100
times for underlying values of k between 0.1 and 1.5 according to the methods. The
purple line indicates perfect inference. Values above the purple line indicate an
overestimation of k; below the line indicate an underestimation of k. R values are
indicated at the top of each panel (R = 0.3, 0.5, 0.7, and 0.9). This analysis focuses
on k values below 1.0; the grey shaded areas represents k values above 1.0.
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eFigure 2A: Estimates of k by case ascertainment probabilities under al-
ternative R and k assumptions. This figure visualizes the bias of missing cases
through passive and active surveillance modeled under alternative R and k values:
(a) R = 0.9, k = 0.25; and (b) R = 0.5, k = 0.25. Numbers in the center of each com-
bination of p1 and p2 represent the median of 1000 simulated surveillance systems,
each originating with 2,000 chains.

(a) k = 0.25, R = 0.90

(b) k = 0.50, R = 0.90
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eFigure 2B: Estimates of R by case ascertainment probabilities under
alternative R and k assumptions. This figure visualizes the bias of missing
cases through passive and active surveillance modeled under alternative R and k
values: (a) R = 0.9, k = 0.25; and (b) R = 0.5, k = 0.25. Numbers in the center of
each combination of p1 and p2 represent the median of 1000 simulated surveillance
systems, each originating with 2,000 chains.

(a) k = 0.25, R = 0.90

(b) k = 0.50, R = 0.90
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eFigure 3: Accounting for censoring in the likelihood. We corrected for
censoring in the likelihood by jointly estimating the probability of fully observed
clusters, P (Y = y), and censored clusters, P (Y ≥ y). Panels A, C, and E represent
5%, 10%, and 20% censoring, respectively, and appear in Figure 3 of the main text
using the full likelihood (”corrected”). Panels B, D, and F are their analogues that do
not account for censoring (”uncorrected,” i.e. all clusters are assumed fully observed,
P (Y = y)). The approach to correct for censoring demonstrates a modest correction
of estimates.
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eFigure 4: Bias in k̂ arising due to overlapping clusters (R = 0.50;k = 0.15).
Results of simulated tuberculosis surveillance systems with overlapping chains ac-
cording to the methods, for each value of k between 0.1 and 1.1 in 0.01 increments
(R = 0.50). Simulations with (A) 5 percent, (B) 10 percent, and (C) 20 percent
of TB chains in the surveillance system unable to be separated (“overlapping” per
methods). Red represents results when the probability is conditioned on the number
of overlapping chains in a given cluster (“Conditioned Likelihood”); blue represents
the results when the number of overlapping chains is ignored (“Unconditioned Like-
lihood”). Shaded areas indicate 95 percent confidence intervals; grey line represents
perfect inference.
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eFigure 5: Performance of inference procedure under imperfect surveil-
lance (R = 0.50;k = 0.15). Results of 500 simulated TB surveillance systems under
combined imperfect surveillance scenarios of A) high-resource; B) moderate-resource;
and C) low-resource settings as defined in Table 2 of main text. Colored lines rep-
resent the interquartile range for each R and k combination; dots represent median
values. Diamonds represent true values. R values were simulated at 0.25, 0.50 (em-
pirical), and 0.75. k values were simulated at 0.15 (empirical), 0.45, and 1.0.
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eFigure 6: Partial rank correlation coefficients (PRCCs) values for the
cluster-based model under empirical parameter assumptions (R = 0.50;k =
0.15). A) PRCC values for the dispersion parameter, k. B) PRCC values for the
reproductive number, R. Parameters p1, p2, pcens, and pclust represent the proba-
bility of passive observation, active case finding, censorship, and the proportion of
overlapping clusters, respectively, as defined in the methods.
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eFigure 7: Coverage probabilities under R = 0.17 and k = 0.09. Using
maximum likelihood estimates (MLE) of R̂ = 0.17 and k̂ = 0.19 derived from the
U.S. data in the main text, we simulated 500 surveillance systems under A) Per-
fect surveillance (coverage probability: 0.956); B) High-resource setting (coverage
probability: 0.934); C) Moderate-resource setting (coverage probability: 0.912); D)
Low-resource setting (coverage probability: 0.832). Vertical lines represent 95% con-
fidence intervals (CI) for each simulation. The purple horizontal line represents the
true parameter value of interest (k = 0.17). Black represents simulations containing
the true parameter in the 95% CI; red represents simulations that do not contain the
true parameter in the 95% CI.
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eFigure 8: Simultaneous Confidence Regions of R and k in the United
States under various cluster definitions. CI indicates confidence interval.
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eFigure 9: The relationship between R, k, and P (Y = y). Previous meth-
ods using IS6110 restriction fragment length polymorphism (RFLP) TB genotypic
cluster sizes were unable to accurately infer R (see Ypma et al, Epidemiology, 2013).
The authors simulated RFLP data with true R = 0.27 and true k as either 0.10 or
1.0 (cross-marked circles). The filled dots represent the authors median estimated R
and k values upon sensitivity analysis. The shaded contours indicate the probability
of observing a cluster of size Y ≥ 10 (red indicates higher probability, with probabil-
ities denoted as numbers on contour lines). While k̂ was robust using these methods
(all values are close to the respective dotted lines), R̂ was highly sensitive. Overlay-
ing the probability demonstrates that k must be interpreted with R to accurately
characterize the propensity for a large outbreak.
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6.2 Supplemental Tables

Supplemental Table S1: Coverage probabilities of the inference procedure
under various k values. Each coverage probability was the result of 500 simulated
surveillance systems, each with 2000 chains and R = 0.25.

True k value Perfect
Surveillance

High-resource
Setting

Moderate-
resource
Setting

Low-resource
Setting

0.10 0.966 0.900 0.886 0.646
0.30 0.966 0.944 0.934 0.860
0.50 0.960 0.938 0.930 0.926
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Supplemental Table S2: Genotype TB cluster sizes in the United States by
timeframe and geographic. Cluster sizes are defined by 24-locus MIRU-VNTR
genotyping.

5 Years (2012 to 2016) 3 Years (2014 to 2016)
Cluster
Size

Number of
Clusters

Total
Cases

Percent of
Cases

Number of
Clusters

Total
Cases

Percent of
Cases

County-level definition
1 26580 26580 75% 16779 16779 81%
2 1638 3276 9% 893 1786 9%
3 474 1422 4% 224 672 3%
4 203 812 2% 90 360 2%
5 98 490 1% 42 210 1%
6 66 396 1% 33 198 1%
7 52 364 1% 21 147 1%
8 29 232 1% 5 40 ≤1%
9 14 126 ≤1% 12 108 1%
10 12 120 ≤1% 5 50 ≤1%
11 12 132 ≤1% 6 66 ≤1%
≥ 12 60 1363 4% 18 364 2%
State-level definition
1 22154 22154 63% 14379 14379 69%
2 1921 3842 11% 1136 2272 11%
3 629 1887 5% 291 873 4%
4 250 1000 3% 128 512 2%
5 139 695 2% 73 365 2%
6 90 540 2% 47 282 1%
7 66 462 1% 35 245 1%
8 51 408 1% 22 176 1%
9 34 306 1% 14 126 1%
10 26 260 1% 17 170 1%
11 18 198 1% 11 121 1%
≥12 1621 3561 10% 59 1259 6%



32

7 Computer Code (R Language)

All code, including a tutorial on using these methods with external datasets, is
available as R files in the following GitHub repository:

https://github.com/jpsmithuga/nbbpClusterAnalysis/

Key R functions are also presented below for posterity and convenience. Note: below
code may differ from code found in GitHub as code in the dynamic repository may
be refined.

7.1 Probability Density Function

The probability of a transmission chain originating with n index cases resulting in a
final transmission cluster size of y can be expressed as:

P (Y = y|n) =

(
n

y

)
Γ(ky + y − n)

Γ(ky)Γ(y − n− 1)

(R
k

)y−n

(1 + R
k

)ky+y−n

The following code returns the probability of observing a cluster size Y initiating
with n index cases with specified negative binomial parameters R and k. The code
returns the log if logp = true and the probability if logp = false

nb_yn <- function(y,n,R,k, logp=TRUE) {

logp_yn <- log(n)-log(y)+lgamma(k*y+y-n)-(lgamma(k*y)+lgamma

(y-n+1))+(y-n)*log(R/k) -(k*y+y-n)*log(1+R/k)

p_yn <- exp(logp_yn)

if(logp){

return(logp_yn)

} else{return(p_yn)}

}

7.2 Branching Process Function

bp <- function(gens=20, init.size=1, offspring , ...){

Z <- list() #initiate the list

Z[[1]] <- init.size

i <- 1

while(sum(Z[[i]]) > 0 && i <= gens) {

Z[[i+1]] <- offspring(sum(Z[[i]]), ...)
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i <- i+1

}

return(Z)

}
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7.3 Imperfect Simulation Function

##’

_______________________________________________________________________________________________

##’ Simulating imperfect observation

##’ @param true_R True underlying R value for NB

branching process

##’ @param true_k True underlying k value for NB

branching process

##’ @param num_chains Number of simulated transmission

chains in a surveillance system

##’ @param p1 Probability of ascertaining cases

by passive surveillance

##’ @param p2 Probability of ascertaining cases

by active surveillance

##’ @param prob_cens Probability that a chain will be

censored

##’ @param perc_overlap Proportion of clusters that

overlap (i.e. multiple index cases)

##’ - - - - - - - - - - - - -

##’ @return Output is a list of length 2, each list

contains a data frame of cluster sizes , index

##’ cases , and censored status , for:

##’ [[1]] Perfect Surveillance

##’ [[2]] Imperfect Surveillance

##’

_______________________________________________________________________________________________

##’

imperfect <- function(true_R, true_k, num_chains = 2000, p1, p

2, prob_cens , perc_overlap){

z <- replicate(num_chains ,bp(offspring = rnbinom , mu = true_

R, size = true_k))

z.pass <- z; z.act <- z

## - - - - - - - - - - - - - - - - - - - - -

## Imperfect case ascertainment

## - - - - - - - - - - - - - - - - - - - - -

#Passive surveillance

for (i in 1:length(z.pass)){

for (j in 1:length(z.pass[[i]])){
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for (k in 1:length(z.pass[[i]][[j]])){

for (l in 1:length(z.pass[[i]][[j]][[k]])){

if (runif(1) < (1 - p1)){

z.pass[[i]][[j]][[k]] <- NA

}}}}}

#Active case finding (only chains with at least one case

observed by passive surveillance)

##’ Note: Index cases with no secondary cases present in the

branching process as a

##’ list of 2 (always [1] and [0]). The second value is what

we are concerned about having an NA value via passive

##’ surveillance. In the scenario where the list is [1] and

[NA], this would artificially make the chain eligible for

##’ reevaluation since the cluster is not completely missing

. So before reevaluation with p2 we need to

##’ assign the first position in all of the lists as NA.

That way , if the index case is missing ,

##’ both values will be missing.

a <- z.pass

for (i in 1:length(a)){

a[[i]][[1]] <- NA

}

b <- cbind(a, sapply(a, function(x) all(is.na(unlist(x)))))

# Determine if at least one case in the chain has been

seen

for (i in 1:length(z.pass)){

if (b[i,2] == TRUE){

z.act[[i]] <- a[[i]] # Skip if cluster no cases are

observed

} else {

for (j in 1:length(z.pass[[i]])){

for (k in 1:length(z.pass[[i]][[j]])){

for (l in 1:length(z.pass[[i]][[j]][[k]])){

if (is.na(z.pass[[i]][[j]][[k]])){

if(runif(1) <= (p2)){ #Active probability

of being seen by case detection

z.act[[i]][[j]][[k]] <- z[[i]][[j]][[k]] #

Reassign original value

} else {z.act[[i]][[j]][[k]] <- z.pass[[i]][[j

]][[k]]}

}}}}}}
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# "Break" chains based on the position of missing cases in

the chain

l <- z.act #dummy/temp data to not change z.act

for (i in 1:length(l)){

l[[i]][[1]] <- NULL #remove first position of the nested

list so that it eases summing lengths (can ’t sum based

on integer values in imperfect observations)

}

#"Break apart" the chains

t1 <- lapply(lapply(seq_along(l), function(nm) {split(l[[nm

]], cumsum(sapply(l[[nm]], function(x) all(is.na(x)))))})

, function(lstA) lapply(lstA ,function(x) Filter(function(

y) !all(is.na(y)), x)))

t2 <- rapply(unlist(t1,recursive=FALSE),function(x) x[!is.na

(x)], how="replace") #Remove NA values.

z.broken <- Filter(length ,t2) #remove all with length 0 (

missing/unobserved)

## - - - - - - - - - - - - - - - - - - - - -

## Censoring

## - - - - - - - - - - - - - - - - - - - - -

z.cen <- z.broken # Initialize the

censored list

for (i in 1:length(z.broken)){ # Iterate through

the list

if (length(z.broken [[i]]) > 1) { # List must

have at least length of two (cant be censored if the

index case isn ’t seen , then it is unobserved as above)

if(runif(1) <= prob_cens){ # Stochastic

process to determine if the nested list will be

censored

if(length(z.broken [[i]]) == 2){

n <- 2} else { # n has to be 2

for chains with only two generations

n <- sample(2:length(z.broken [[i]]), 1)} #

Randomly determine what list position in the

nested list will be the censor threshold

z.cen[[i]][n:length(z.broken [[i]])] <- NA # Fill all

positions from n to the end of the nested list

with NA
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}}}

out_list <- lapply(z.cen , function(x) { # Remove all

nested list elements that contain NA

inds <- sapply(x, function(x) any(is.na(x)))

if(any(inds)) x[seq_len(which.max(inds) - 1)] else x})

cens <- numeric(length(out_list))

true <- numeric(length(out_list))

for (k in 1:length(out_list)){

cens[k] <- sum(lengths(out_list[[k]])) # Get cluster size

of censored clusters

true[k] <- sum(lengths(z.broken [[k]])) # Get cluster size

of uncensored (but imperfect obs) clusters

}

Y_cens <- data.frame(y.cens = cens , censor = ifelse(cens!=

true ,1,0)) #Create a censoring index (1=censored , 0=

uncensored)

## - - - - - - - - - - - - - - - - - - - - -

## Overlapping clusters

## - - - - - - - - - - - - - - - - - - - - -

#’ Determine sampling space - i.e. how many clusters get

merged with each iteration

#’ choose j from Poisson with lambda=2

lamda <- 2

a <- rpois(10000000,lamda) # Drawn from a Poisson with lamda

=2 for main text

n <- round(nrow(Y_cens)*perc_overlap) # Determine

the number to be merged

sample_clust <- sample(a[a > 1], size = n, replace = TRUE) #

Randomly choose j (discard 0 and 1)

names(sample_clust) <- paste0("S", 1:n)

m <- nrow(Y_cens) - sum(sample_clust) # Determine the number

that will not be merged (m)

non_merge_clust <- rep(1, m) # Create a vector with

replicated 1 based on m

names(non_merge_clust) <- paste0("N", 1:m)

combine_clust <- c(sample_clust , non_merge_clust) # Combine

sample_clust and non_merge_clust , and then randomly sort

the vector

combine_clust2 <- sample(combine_clust , size = length(

combine_clust))
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expand_list <- list(lengths = combine_clust2, values = names

(combine_clust2))# Expand the vector

expand_clust <- inverse.rle(expand_list)

dat <- data.frame(Y_cens , group = factor(expand_clust ,

levels = unique(expand_clust)))# Create a data frame with

y and expand_clust

dat$index <- 1 # add the index case number for summing

dat2 <- aggregate(cbind(dat$y.cens , dat$index , dat$censor),
by = list(group = dat$group), FUN = sum) # Convert dat2

to a matrix , sum the index cases and censoring index ,

remove the group column

dat2$group <- NULL

y.merged <- as.matrix(dat2); colnames(y.merged) <- c("clust_

size","index_cases","censor_status")

y.final <- data.frame(y.merged) #just to be safe

y.final$censor_status <- ifelse(y.final$censor_status >= 1,1

,0) # if more than 1 censored clusters merged

## - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - -

y.true <- unlist(lapply(z,function(x) sum(unlist(x)))) # Sum

true cluster sizes

Y.true <- data.frame(y.true = y.true , index = rep(1, times

= length(y.true)), censor = rep(0, times = length(y.true)

)) # Format data for perfect surveillance (no censoring

or subclustering)

names(Y.true) <- c("clust_size","index_cases","censor_status

")

return(list(Y.true , y.final))

#return(list(z, z.pass , z.act , z.broken , out_list , cens ,

true , Y_cens , y.final)) #for validation

}
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7.4 Likelihood Function

cens_likelihood <- function(Y,R,k) {

p_function <- function(y,n){ #Dummy function to

apply

exp(log(n)-log(y)+lgamma(k*y+y-n)-(lgamma(k*y)+lgamma(y-n+

1))+(y-n)*log(R/k) -(k*y+y-n)*log(1+R/k)) #PDF as

defined un methods

}

ya <- Y[Y[,3]==0,] # Uncensored clusters

yb <- Y[Y[,3]==1,] # Censored clusters

liks_a <- log(p_function(ya[,1],ya[,2])) # Can apply P(Y=y)

via vectorization

liks_b <- numeric(nrow(yb)) # Not sure how to

vectorize with the $P(Y \geq y)$ being of the 1-sum(p_

function(1:(y-1),n)) below

if(nrow(yb)>0){ # This for loop

approach is reasonably fast (about 9 seconds on a list of

2000 cluster sizes)

for (i in 1:nrow(yb)){

y <- yb[i,1]

n <- yb[i,2]

if (y==1){ # If the cluster size

is 1, the P(1)=1, thus log(1)=0

liks_b[i] <- 0 # This trick

prevents issues with running the code

} else{

if (is.nan(log(max(10^-300,1-sum(p_function(1:(y-1),n)

))))){ # Trick to avoid NaN due to extremely

unlikely clusters (very rare , but was causing

numeric overflow problems)

liks_b[i] <- log(10^-300)

} else {liks_b[i] <- log(max(10^-300,1-sum(p_function(

1:(y-1),n))))}

}}}

sumliks <- sum(liks_a,liks_b)

return(sumliks)

#return(list(liks_a,liks_b)) #validate

}
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7.5 Parameter Estimation Functions

##’

_______________________________________________________________________________________________

##’ Surface/profile likelihood function

##’ Calculates likelihoods over a range of R and k values

##’ @param data 3-column data frame or matrix containing

##’ [,1] Custer Size

##’ [,2] Index Cases

##’ [,3] Censored status

##’ @param Rrange Range of R values

##’ @param krange Range of k values

##’ - - - - - - - - - - - - -

##’ @return Rrange by krange Matrix with likelihoods

##’

_______________________________________________________________________________________________

surflike <- function(data , Rrange , krange){

likesurf <- matrix(NA, nrow = length(Rrange),length(krange))

for(i in 1:length(Rrange)){

for(j in 1:length(krange)){

likesurf[i,j] <- likelihood(data , Rrange[i],krange[j])

}

}

return(likesurf)

}

##’

_______________________________________________________________________________________________

##’ Parameter Estimation

##’ Estimates MLE and confidence interval for R and k

##’ @param ls likelihood surface data obtained from

surflike () function

##’ @param ls_max logical likelihood surface data

identifying max (ls_max <- ls==max(ls))

##’ @param conf.interval Desired confidence interval (as

decimal , i.e. 0.95)

##’ - - - - - - - - - - - - -

##’ @return Point , lower , and upper bound estimates for R
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and k

##’

_______________________________________________________________________________________________

calc_profile <- function(ls , ls_max , Rrange , krange , conf.

interval){

chiV <- qchisq(conf.interval/100, df = 1) / 2

prfk <- apply(ls ,2,function(x){max(x)})

prfk2 <- krange[prfk - max(prfk) >- chiV]

prfR <- apply(ls ,1,function(x){max(x)})

prfR2 <- Rrange[prfR - max(prfR) >- chiV]

output <- rbind(cbind(Rrange[sum(seq(1, length(Rrange)) %*%

ls_max)], min(prfR2),max(prfR2)),

cbind(krange[sum(ls_max %*% seq(1, length(

krange)))], min(prfk2),max(prfk2)))

colnames(output) <- c("point_est","lower_ci","upper_ci")

rownames(output) <- c("R","k")

return(output)

}

7.6 Applying Methods to External Datasets

##’ This code will explain how to use these methods with

external surveillance cluster data

##’

#

###############################################################################################

## Preparing the data

#

###############################################################################################

##’ First , the data need to be prepared with three columns:

##’ 1: cluster size (with each row a unique cluster)

##’ 2: number of subclusters/index cases

##’ 3: censorship status

##’
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##’ Typically , the second and third columns are 1 and 0,

respectively

##’ Each row in the dataset needs to be an individual cluster ,

so the

##’ length of the dataset is the number of clusters in the

surveillance

##’ system. However , often data come in the form of a table , i

.e.:

##’ ----------------------------

##’ Cluster size | Frequency

##’ ----------------------------

##’ 1 | 4003

##’ 2 | 362

##’ 3 | 174

##’ 4 | 92

##’ 5 | 75

##’ 6 | 41

##’ 7 | 44

##’ 8 | 19

##’ .....

##’ 52 | 1

##’ 68 | 1

##’ 77 | 1

##’

##’ The below code will help you convert table data of cluster

sizes to the

##’ format appropriate for this code

##’ First , we will create example table data for demonstration

purposes using the branching

##’ process function to generate a surveillance system

bp <- function(gens = 100, init.size = 1, offspring , ...){

Z <- list() #initiate the list

Z[[1]] <- init.size #set the first position of the list as

the number of index cases

i <- 1

while(sum(Z[[i]]) > 0 && i <= gens) {

Z[[i+1]] <- offspring(sum(Z[[i]]), ...)

i <- i+1
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}

return(Z)

}

##’ We can now generate our example table data. Here we will

simulate a

##’ surveillance system originating with 1000 chains , with an

offspring

##’ distributed with mean R = 0.50 and dispersion k = 0.15

num_chains <- 1000

R <- 0.50

k <- 0.15

set.seed(05062020)

table_data <- data.frame(table(unlist(lapply(replicate(num_

chains , bp(offspring = rnbinom , mu = R, size = k)),function

(x) sum(unlist(x))))))

names(table_data) <- c("cluster_size","frequency") # rename

columns

table_data[ , "cluster_size"] <- as.numeric(as.character(table

_data[ , "cluster_size"])) # convert to numeric

##’ In these data , the first column is the cluster size , the

second column is the frequency.

##’ Ensure your data are in this format.

##’ To convert it to the proper long format (each individual

cluster is a row) for use in these methods ,

##’ run the following step on your table data. This assumes no

subclustering or censoring.

Y_data <- data.frame(clust_sizes = table_data[rep(seq_len(nrow

(table_data)), table_data[, "frequency"]), ][ , 1],

index_cases = rep(1, times = sum(table_

data[, "frequency"])),

cens_status = rep(0, times = sum(table_

data[, "frequency"])))

##’ If you want to assume some definition for censoring , i.e.,

clusters larger than some threshold are censored ,

##’ you can easily do this:

##’
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# cens_threshold <- 10

# Y_data[Y_data[ , "clust_sizes "] >= cens_threshold , "cens_

status "] <- 1 # all clusters Y >= 10

#

###############################################################################################

## Using the likelihood and parameter estimation functions

#

###############################################################################################

##’ Now that the data are prepared and in the proper format ,

parameter estimation is quite easy

##’ Pull in the functions from the file , "Likelihood and

Parameter Estimation Functions.R"

##’ Note: the functions are also pasted below for convenience ,

in case the additional file is unavailable

# source ("~ Insert_Filepath/Likelihood and Parameter Estimation

Functions.R")

##’ If not yet defined , define search grid , which will be an R

x k matrix with each cell containing

##’ the likelihood of each R/k combination

resolution <- 0.01 # set resolution (increased resolution

increases computer time needed)

# R range

R.min <- 0.01

R.max <- 1.00

Rrange <- seq(R.min , R.max , by = resolution)

# k range

k.min <- 0.01

k.max <- 1.00

krange <- seq(k.min , k.max , by = resolution)

# Calculate grid of likelihoods

Y_surflikes <- surflike(data = Y_data , Rrange = Rrange , krange

= krange)
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# find maximum in the x,y grid

Y_maxlikes <- Y_surflikes == max(Y_surflikes)

# estimate parameters

Y_MLE <- calc_profile(ls = Y_surflikes , ls_max = Y_maxlikes ,

Rrange = Rrange , krange = krange , conf.interval = 95)

Y_MLE

#

###############################################################################################

## Creating a figure

#

###############################################################################################

# Set values to calculate 90 and 95% confidence regions

CI95 <- qchisq(0.95, df = 1) / 2

CI90 <- qchisq(0.90, df = 1) / 2

# Calculate contour lines for 90 and 95% confidence regions

ctlns_95 <- contourLines(x = Rrange , y = log10(krange), as.

matrix(Y_surflikes - max(Y_surflikes)), levels = c(-CI95,

CI95+0.001))

ctlns_90 <- contourLines(x = Rrange , y = log10(krange), as.

matrix(Y_surflikes - max(Y_surflikes)), levels = c(-CI90,

CI90+0.001))

# Set some general figure parameters , i.e. axes , colors , etc

xtick <- seq(0, 1.4, 0.1)

ytick <- c(0.01, 0.05, 0.1, 0.15, 0.3, 0.5, 0.75, 1.0)

# Make figure

# pdf(paste0("~ filepath/MLE_90_and_95_Estimates _",Sys.Date()

,".pdf"), width=10, height=8) # if you want to save PDF ,

uncomment this and "dev.off()" below

filled.contour(x = Rrange , y = log10(krange), as.matrix(Y_

surflikes - max(Y_surflikes)), col=’white ’, levels = seq(-3

,0,0.5),

xlab = ’Reproduction number , R’, ylab = "
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Dispersion parameter , k (log scale)",

xlim=c(0.01, 1),

ylim=log10(c(0.01,max(krange))),

plot.axes = {

axis(1, at = xtick , label = xtick)

axis(2, at = log10(ytick), label = ytick)

points(Y_MLE["R","point_est"], log10(Y_MLE["k

","point_est"]), pch = 19, cex = 0.5, col=

"black")

lines(ctlns_95[[1]][[2]], ctlns_95[[1]][[3]],

lty = 1, col = "black")

lines(ctlns_90[[1]][[2]], ctlns_90[[1]][[3]],

lty = 3, col = "black")

}

)

legend(’topleft ’, c("95% CI", "90% CI"), lty = c(1,3), lwd = 2

, col = "black", bty=’n’)

# dev.off()
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